Fracture Properties of Nash Point Shale as a Function of Orientation to Bedding
Understanding how fracture networks develop in shale formations is important when exploiting unconventional hydrocarbon reservoirs and analyzing the integrity of the seals of conventional and carbon capture and storage reservoirs. Despite this importance, experimentally derived fracture data for sha...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Solid earth 2018-10, Vol.123 (10), p.8428-8444 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8444 |
---|---|
container_issue | 10 |
container_start_page | 8428 |
container_title | Journal of geophysical research. Solid earth |
container_volume | 123 |
creator | Forbes Inskip, Nathaniel D. Meredith, Philip G. Chandler, Michael R. Gudmundsson, Agust |
description | Understanding how fracture networks develop in shale formations is important when exploiting unconventional hydrocarbon reservoirs and analyzing the integrity of the seals of conventional and carbon capture and storage reservoirs. Despite this importance, experimentally derived fracture data for shale remains sparse. Here we characterize shale from Nash Point in South Wales, United Kingdom, in terms of ultrasonic wave velocities, tensile strength, and fracture toughness (KIc). We measure these properties in multiple orientations, including angles oblique to the three principal fracture orientations—Short‐transverse, Arrester, and Divider. We find that the Nash Point shale is mechanically highly anisotropic, with tensile strength and KIc values lowest in the Short‐transverse orientation and highest in the Arrester and Divider orientations. Fractures that propagate in a direction oblique or normal to bedding commonly deflect toward the weaker Short‐transverse orientation. Such deflected fractures can no longer be considered to propagate in pure mode‐I. We therefore present a method to correct measured KIc values to account for deflection by calculating mode‐I and mode‐II deflection stress intensities (KId and KIId, respectively). Because of the mixed‐mode nature of deflected fractures, we adopt a fracture (Gc) energy‐based approach that allows analysis of critical fracture propagation conditions for both deflected and undeflected fractures in all orientations. We find that Gc increases as the angle from the Short‐transverse plane increases. We conclude that a modified elliptical function, previously applied to tensile strength and KIc, can be used to estimate values of Gc at angles between the Short‐transverse and Arrester orientations.
Key Points
Measurements of tensile strength and mode‐I fracture toughness (KIc) show that Nash Point shale is mechanically highly anisotropic
We find that a fracture energy (Gc) approach is more suitable than using KIc alone, because it allows analysis of mixed mode fracture propagation
An elliptical function can be used to estimate Gc for fractures propagating at angles between the Short‐transverse and Arrester directions |
doi_str_mv | 10.1029/2018JB015943 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2137165932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2137165932</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3685-41bade84d3be34e9641c94fe3d61195a070d26c5b2006f5efa9327851a321f5b3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWGpvfoCAV1czySbdHG2x1VJs8c95ye5O7Ja6qUmW0m_v1op4ci5vZvjNG3iEXAK7Acb1LWeQzUYMpE7FCelxUDrRQqrT3x7EORmEsGZdZd0K0h5ZTLwpY-uRLr3boo81BuosfTJhRZeubiJ9WZkNUhOooZO2KWPtmgOx8DU20XyP0dERVlXdvF-QM2s2AQc_2idvk_vX8UMyX0wfx3fzxAiVySSFwlSYpZUoUKSoVQqlTi2KSgFoadiQVVyVsuCMKSvRGi34MJNgBAcrC9EnV0ffrXefLYaYr13rm-5lzkEMQcnuoKOuj1TpXQgebb719Yfx-xxYfkgt_5tah4sjvqs3uP-XzWfT55EUTErxBYtQa8Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2137165932</pqid></control><display><type>article</type><title>Fracture Properties of Nash Point Shale as a Function of Orientation to Bedding</title><source>Wiley Online Library Journals</source><source>Wiley Free Archive</source><creator>Forbes Inskip, Nathaniel D. ; Meredith, Philip G. ; Chandler, Michael R. ; Gudmundsson, Agust</creator><creatorcontrib>Forbes Inskip, Nathaniel D. ; Meredith, Philip G. ; Chandler, Michael R. ; Gudmundsson, Agust</creatorcontrib><description>Understanding how fracture networks develop in shale formations is important when exploiting unconventional hydrocarbon reservoirs and analyzing the integrity of the seals of conventional and carbon capture and storage reservoirs. Despite this importance, experimentally derived fracture data for shale remains sparse. Here we characterize shale from Nash Point in South Wales, United Kingdom, in terms of ultrasonic wave velocities, tensile strength, and fracture toughness (KIc). We measure these properties in multiple orientations, including angles oblique to the three principal fracture orientations—Short‐transverse, Arrester, and Divider. We find that the Nash Point shale is mechanically highly anisotropic, with tensile strength and KIc values lowest in the Short‐transverse orientation and highest in the Arrester and Divider orientations. Fractures that propagate in a direction oblique or normal to bedding commonly deflect toward the weaker Short‐transverse orientation. Such deflected fractures can no longer be considered to propagate in pure mode‐I. We therefore present a method to correct measured KIc values to account for deflection by calculating mode‐I and mode‐II deflection stress intensities (KId and KIId, respectively). Because of the mixed‐mode nature of deflected fractures, we adopt a fracture (Gc) energy‐based approach that allows analysis of critical fracture propagation conditions for both deflected and undeflected fractures in all orientations. We find that Gc increases as the angle from the Short‐transverse plane increases. We conclude that a modified elliptical function, previously applied to tensile strength and KIc, can be used to estimate values of Gc at angles between the Short‐transverse and Arrester orientations.
Key Points
Measurements of tensile strength and mode‐I fracture toughness (KIc) show that Nash Point shale is mechanically highly anisotropic
We find that a fracture energy (Gc) approach is more suitable than using KIc alone, because it allows analysis of mixed mode fracture propagation
An elliptical function can be used to estimate Gc for fractures propagating at angles between the Short‐transverse and Arrester directions</description><identifier>ISSN: 2169-9313</identifier><identifier>EISSN: 2169-9356</identifier><identifier>DOI: 10.1029/2018JB015943</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>anisotropy ; Carbon capture and storage ; Carbon sequestration ; Crack propagation ; Deflection ; Elliptic functions ; fracture energy ; Fracture mechanics ; Fracture toughness ; Fractures ; Geophysics ; Orientation ; Properties ; Reservoirs ; Sedimentary rocks ; Shale ; Shales ; Storage reservoirs ; Tensile strength ; Wave velocity</subject><ispartof>Journal of geophysical research. Solid earth, 2018-10, Vol.123 (10), p.8428-8444</ispartof><rights>2018. The Authors.</rights><rights>2018. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3685-41bade84d3be34e9641c94fe3d61195a070d26c5b2006f5efa9327851a321f5b3</citedby><cites>FETCH-LOGICAL-a3685-41bade84d3be34e9641c94fe3d61195a070d26c5b2006f5efa9327851a321f5b3</cites><orcidid>0000-0001-9683-5704 ; 0000-0003-2193-5342 ; 0000-0002-7833-3521</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2018JB015943$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2018JB015943$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids></links><search><creatorcontrib>Forbes Inskip, Nathaniel D.</creatorcontrib><creatorcontrib>Meredith, Philip G.</creatorcontrib><creatorcontrib>Chandler, Michael R.</creatorcontrib><creatorcontrib>Gudmundsson, Agust</creatorcontrib><title>Fracture Properties of Nash Point Shale as a Function of Orientation to Bedding</title><title>Journal of geophysical research. Solid earth</title><description>Understanding how fracture networks develop in shale formations is important when exploiting unconventional hydrocarbon reservoirs and analyzing the integrity of the seals of conventional and carbon capture and storage reservoirs. Despite this importance, experimentally derived fracture data for shale remains sparse. Here we characterize shale from Nash Point in South Wales, United Kingdom, in terms of ultrasonic wave velocities, tensile strength, and fracture toughness (KIc). We measure these properties in multiple orientations, including angles oblique to the three principal fracture orientations—Short‐transverse, Arrester, and Divider. We find that the Nash Point shale is mechanically highly anisotropic, with tensile strength and KIc values lowest in the Short‐transverse orientation and highest in the Arrester and Divider orientations. Fractures that propagate in a direction oblique or normal to bedding commonly deflect toward the weaker Short‐transverse orientation. Such deflected fractures can no longer be considered to propagate in pure mode‐I. We therefore present a method to correct measured KIc values to account for deflection by calculating mode‐I and mode‐II deflection stress intensities (KId and KIId, respectively). Because of the mixed‐mode nature of deflected fractures, we adopt a fracture (Gc) energy‐based approach that allows analysis of critical fracture propagation conditions for both deflected and undeflected fractures in all orientations. We find that Gc increases as the angle from the Short‐transverse plane increases. We conclude that a modified elliptical function, previously applied to tensile strength and KIc, can be used to estimate values of Gc at angles between the Short‐transverse and Arrester orientations.
Key Points
Measurements of tensile strength and mode‐I fracture toughness (KIc) show that Nash Point shale is mechanically highly anisotropic
We find that a fracture energy (Gc) approach is more suitable than using KIc alone, because it allows analysis of mixed mode fracture propagation
An elliptical function can be used to estimate Gc for fractures propagating at angles between the Short‐transverse and Arrester directions</description><subject>anisotropy</subject><subject>Carbon capture and storage</subject><subject>Carbon sequestration</subject><subject>Crack propagation</subject><subject>Deflection</subject><subject>Elliptic functions</subject><subject>fracture energy</subject><subject>Fracture mechanics</subject><subject>Fracture toughness</subject><subject>Fractures</subject><subject>Geophysics</subject><subject>Orientation</subject><subject>Properties</subject><subject>Reservoirs</subject><subject>Sedimentary rocks</subject><subject>Shale</subject><subject>Shales</subject><subject>Storage reservoirs</subject><subject>Tensile strength</subject><subject>Wave velocity</subject><issn>2169-9313</issn><issn>2169-9356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp9kE9LAzEQxYMoWGpvfoCAV1czySbdHG2x1VJs8c95ye5O7Ja6qUmW0m_v1op4ci5vZvjNG3iEXAK7Acb1LWeQzUYMpE7FCelxUDrRQqrT3x7EORmEsGZdZd0K0h5ZTLwpY-uRLr3boo81BuosfTJhRZeubiJ9WZkNUhOooZO2KWPtmgOx8DU20XyP0dERVlXdvF-QM2s2AQc_2idvk_vX8UMyX0wfx3fzxAiVySSFwlSYpZUoUKSoVQqlTi2KSgFoadiQVVyVsuCMKSvRGi34MJNgBAcrC9EnV0ffrXefLYaYr13rm-5lzkEMQcnuoKOuj1TpXQgebb719Yfx-xxYfkgt_5tah4sjvqs3uP-XzWfT55EUTErxBYtQa8Y</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Forbes Inskip, Nathaniel D.</creator><creator>Meredith, Philip G.</creator><creator>Chandler, Michael R.</creator><creator>Gudmundsson, Agust</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-9683-5704</orcidid><orcidid>https://orcid.org/0000-0003-2193-5342</orcidid><orcidid>https://orcid.org/0000-0002-7833-3521</orcidid></search><sort><creationdate>201810</creationdate><title>Fracture Properties of Nash Point Shale as a Function of Orientation to Bedding</title><author>Forbes Inskip, Nathaniel D. ; Meredith, Philip G. ; Chandler, Michael R. ; Gudmundsson, Agust</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3685-41bade84d3be34e9641c94fe3d61195a070d26c5b2006f5efa9327851a321f5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>anisotropy</topic><topic>Carbon capture and storage</topic><topic>Carbon sequestration</topic><topic>Crack propagation</topic><topic>Deflection</topic><topic>Elliptic functions</topic><topic>fracture energy</topic><topic>Fracture mechanics</topic><topic>Fracture toughness</topic><topic>Fractures</topic><topic>Geophysics</topic><topic>Orientation</topic><topic>Properties</topic><topic>Reservoirs</topic><topic>Sedimentary rocks</topic><topic>Shale</topic><topic>Shales</topic><topic>Storage reservoirs</topic><topic>Tensile strength</topic><topic>Wave velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Forbes Inskip, Nathaniel D.</creatorcontrib><creatorcontrib>Meredith, Philip G.</creatorcontrib><creatorcontrib>Chandler, Michael R.</creatorcontrib><creatorcontrib>Gudmundsson, Agust</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Free Archive</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of geophysical research. Solid earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Forbes Inskip, Nathaniel D.</au><au>Meredith, Philip G.</au><au>Chandler, Michael R.</au><au>Gudmundsson, Agust</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fracture Properties of Nash Point Shale as a Function of Orientation to Bedding</atitle><jtitle>Journal of geophysical research. Solid earth</jtitle><date>2018-10</date><risdate>2018</risdate><volume>123</volume><issue>10</issue><spage>8428</spage><epage>8444</epage><pages>8428-8444</pages><issn>2169-9313</issn><eissn>2169-9356</eissn><abstract>Understanding how fracture networks develop in shale formations is important when exploiting unconventional hydrocarbon reservoirs and analyzing the integrity of the seals of conventional and carbon capture and storage reservoirs. Despite this importance, experimentally derived fracture data for shale remains sparse. Here we characterize shale from Nash Point in South Wales, United Kingdom, in terms of ultrasonic wave velocities, tensile strength, and fracture toughness (KIc). We measure these properties in multiple orientations, including angles oblique to the three principal fracture orientations—Short‐transverse, Arrester, and Divider. We find that the Nash Point shale is mechanically highly anisotropic, with tensile strength and KIc values lowest in the Short‐transverse orientation and highest in the Arrester and Divider orientations. Fractures that propagate in a direction oblique or normal to bedding commonly deflect toward the weaker Short‐transverse orientation. Such deflected fractures can no longer be considered to propagate in pure mode‐I. We therefore present a method to correct measured KIc values to account for deflection by calculating mode‐I and mode‐II deflection stress intensities (KId and KIId, respectively). Because of the mixed‐mode nature of deflected fractures, we adopt a fracture (Gc) energy‐based approach that allows analysis of critical fracture propagation conditions for both deflected and undeflected fractures in all orientations. We find that Gc increases as the angle from the Short‐transverse plane increases. We conclude that a modified elliptical function, previously applied to tensile strength and KIc, can be used to estimate values of Gc at angles between the Short‐transverse and Arrester orientations.
Key Points
Measurements of tensile strength and mode‐I fracture toughness (KIc) show that Nash Point shale is mechanically highly anisotropic
We find that a fracture energy (Gc) approach is more suitable than using KIc alone, because it allows analysis of mixed mode fracture propagation
An elliptical function can be used to estimate Gc for fractures propagating at angles between the Short‐transverse and Arrester directions</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2018JB015943</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-9683-5704</orcidid><orcidid>https://orcid.org/0000-0003-2193-5342</orcidid><orcidid>https://orcid.org/0000-0002-7833-3521</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-9313 |
ispartof | Journal of geophysical research. Solid earth, 2018-10, Vol.123 (10), p.8428-8444 |
issn | 2169-9313 2169-9356 |
language | eng |
recordid | cdi_proquest_journals_2137165932 |
source | Wiley Online Library Journals; Wiley Free Archive |
subjects | anisotropy Carbon capture and storage Carbon sequestration Crack propagation Deflection Elliptic functions fracture energy Fracture mechanics Fracture toughness Fractures Geophysics Orientation Properties Reservoirs Sedimentary rocks Shale Shales Storage reservoirs Tensile strength Wave velocity |
title | Fracture Properties of Nash Point Shale as a Function of Orientation to Bedding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A31%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fracture%20Properties%20of%20Nash%20Point%20Shale%20as%20a%20Function%20of%20Orientation%20to%20Bedding&rft.jtitle=Journal%20of%20geophysical%20research.%20Solid%20earth&rft.au=Forbes%20Inskip,%20Nathaniel%20D.&rft.date=2018-10&rft.volume=123&rft.issue=10&rft.spage=8428&rft.epage=8444&rft.pages=8428-8444&rft.issn=2169-9313&rft.eissn=2169-9356&rft_id=info:doi/10.1029/2018JB015943&rft_dat=%3Cproquest_cross%3E2137165932%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2137165932&rft_id=info:pmid/&rfr_iscdi=true |