Fracture Properties of Nash Point Shale as a Function of Orientation to Bedding

Understanding how fracture networks develop in shale formations is important when exploiting unconventional hydrocarbon reservoirs and analyzing the integrity of the seals of conventional and carbon capture and storage reservoirs. Despite this importance, experimentally derived fracture data for sha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Solid earth 2018-10, Vol.123 (10), p.8428-8444
Hauptverfasser: Forbes Inskip, Nathaniel D., Meredith, Philip G., Chandler, Michael R., Gudmundsson, Agust
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8444
container_issue 10
container_start_page 8428
container_title Journal of geophysical research. Solid earth
container_volume 123
creator Forbes Inskip, Nathaniel D.
Meredith, Philip G.
Chandler, Michael R.
Gudmundsson, Agust
description Understanding how fracture networks develop in shale formations is important when exploiting unconventional hydrocarbon reservoirs and analyzing the integrity of the seals of conventional and carbon capture and storage reservoirs. Despite this importance, experimentally derived fracture data for shale remains sparse. Here we characterize shale from Nash Point in South Wales, United Kingdom, in terms of ultrasonic wave velocities, tensile strength, and fracture toughness (KIc). We measure these properties in multiple orientations, including angles oblique to the three principal fracture orientations—Short‐transverse, Arrester, and Divider. We find that the Nash Point shale is mechanically highly anisotropic, with tensile strength and KIc values lowest in the Short‐transverse orientation and highest in the Arrester and Divider orientations. Fractures that propagate in a direction oblique or normal to bedding commonly deflect toward the weaker Short‐transverse orientation. Such deflected fractures can no longer be considered to propagate in pure mode‐I. We therefore present a method to correct measured KIc values to account for deflection by calculating mode‐I and mode‐II deflection stress intensities (KId and KIId, respectively). Because of the mixed‐mode nature of deflected fractures, we adopt a fracture (Gc) energy‐based approach that allows analysis of critical fracture propagation conditions for both deflected and undeflected fractures in all orientations. We find that Gc increases as the angle from the Short‐transverse plane increases. We conclude that a modified elliptical function, previously applied to tensile strength and KIc, can be used to estimate values of Gc at angles between the Short‐transverse and Arrester orientations. Key Points Measurements of tensile strength and mode‐I fracture toughness (KIc) show that Nash Point shale is mechanically highly anisotropic We find that a fracture energy (Gc) approach is more suitable than using KIc alone, because it allows analysis of mixed mode fracture propagation An elliptical function can be used to estimate Gc for fractures propagating at angles between the Short‐transverse and Arrester directions
doi_str_mv 10.1029/2018JB015943
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2137165932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2137165932</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3685-41bade84d3be34e9641c94fe3d61195a070d26c5b2006f5efa9327851a321f5b3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWGpvfoCAV1czySbdHG2x1VJs8c95ye5O7Ja6qUmW0m_v1op4ci5vZvjNG3iEXAK7Acb1LWeQzUYMpE7FCelxUDrRQqrT3x7EORmEsGZdZd0K0h5ZTLwpY-uRLr3boo81BuosfTJhRZeubiJ9WZkNUhOooZO2KWPtmgOx8DU20XyP0dERVlXdvF-QM2s2AQc_2idvk_vX8UMyX0wfx3fzxAiVySSFwlSYpZUoUKSoVQqlTi2KSgFoadiQVVyVsuCMKSvRGi34MJNgBAcrC9EnV0ffrXefLYaYr13rm-5lzkEMQcnuoKOuj1TpXQgebb719Yfx-xxYfkgt_5tah4sjvqs3uP-XzWfT55EUTErxBYtQa8Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2137165932</pqid></control><display><type>article</type><title>Fracture Properties of Nash Point Shale as a Function of Orientation to Bedding</title><source>Wiley Online Library Journals</source><source>Wiley Free Archive</source><creator>Forbes Inskip, Nathaniel D. ; Meredith, Philip G. ; Chandler, Michael R. ; Gudmundsson, Agust</creator><creatorcontrib>Forbes Inskip, Nathaniel D. ; Meredith, Philip G. ; Chandler, Michael R. ; Gudmundsson, Agust</creatorcontrib><description>Understanding how fracture networks develop in shale formations is important when exploiting unconventional hydrocarbon reservoirs and analyzing the integrity of the seals of conventional and carbon capture and storage reservoirs. Despite this importance, experimentally derived fracture data for shale remains sparse. Here we characterize shale from Nash Point in South Wales, United Kingdom, in terms of ultrasonic wave velocities, tensile strength, and fracture toughness (KIc). We measure these properties in multiple orientations, including angles oblique to the three principal fracture orientations—Short‐transverse, Arrester, and Divider. We find that the Nash Point shale is mechanically highly anisotropic, with tensile strength and KIc values lowest in the Short‐transverse orientation and highest in the Arrester and Divider orientations. Fractures that propagate in a direction oblique or normal to bedding commonly deflect toward the weaker Short‐transverse orientation. Such deflected fractures can no longer be considered to propagate in pure mode‐I. We therefore present a method to correct measured KIc values to account for deflection by calculating mode‐I and mode‐II deflection stress intensities (KId and KIId, respectively). Because of the mixed‐mode nature of deflected fractures, we adopt a fracture (Gc) energy‐based approach that allows analysis of critical fracture propagation conditions for both deflected and undeflected fractures in all orientations. We find that Gc increases as the angle from the Short‐transverse plane increases. We conclude that a modified elliptical function, previously applied to tensile strength and KIc, can be used to estimate values of Gc at angles between the Short‐transverse and Arrester orientations. Key Points Measurements of tensile strength and mode‐I fracture toughness (KIc) show that Nash Point shale is mechanically highly anisotropic We find that a fracture energy (Gc) approach is more suitable than using KIc alone, because it allows analysis of mixed mode fracture propagation An elliptical function can be used to estimate Gc for fractures propagating at angles between the Short‐transverse and Arrester directions</description><identifier>ISSN: 2169-9313</identifier><identifier>EISSN: 2169-9356</identifier><identifier>DOI: 10.1029/2018JB015943</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>anisotropy ; Carbon capture and storage ; Carbon sequestration ; Crack propagation ; Deflection ; Elliptic functions ; fracture energy ; Fracture mechanics ; Fracture toughness ; Fractures ; Geophysics ; Orientation ; Properties ; Reservoirs ; Sedimentary rocks ; Shale ; Shales ; Storage reservoirs ; Tensile strength ; Wave velocity</subject><ispartof>Journal of geophysical research. Solid earth, 2018-10, Vol.123 (10), p.8428-8444</ispartof><rights>2018. The Authors.</rights><rights>2018. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3685-41bade84d3be34e9641c94fe3d61195a070d26c5b2006f5efa9327851a321f5b3</citedby><cites>FETCH-LOGICAL-a3685-41bade84d3be34e9641c94fe3d61195a070d26c5b2006f5efa9327851a321f5b3</cites><orcidid>0000-0001-9683-5704 ; 0000-0003-2193-5342 ; 0000-0002-7833-3521</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2018JB015943$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2018JB015943$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids></links><search><creatorcontrib>Forbes Inskip, Nathaniel D.</creatorcontrib><creatorcontrib>Meredith, Philip G.</creatorcontrib><creatorcontrib>Chandler, Michael R.</creatorcontrib><creatorcontrib>Gudmundsson, Agust</creatorcontrib><title>Fracture Properties of Nash Point Shale as a Function of Orientation to Bedding</title><title>Journal of geophysical research. Solid earth</title><description>Understanding how fracture networks develop in shale formations is important when exploiting unconventional hydrocarbon reservoirs and analyzing the integrity of the seals of conventional and carbon capture and storage reservoirs. Despite this importance, experimentally derived fracture data for shale remains sparse. Here we characterize shale from Nash Point in South Wales, United Kingdom, in terms of ultrasonic wave velocities, tensile strength, and fracture toughness (KIc). We measure these properties in multiple orientations, including angles oblique to the three principal fracture orientations—Short‐transverse, Arrester, and Divider. We find that the Nash Point shale is mechanically highly anisotropic, with tensile strength and KIc values lowest in the Short‐transverse orientation and highest in the Arrester and Divider orientations. Fractures that propagate in a direction oblique or normal to bedding commonly deflect toward the weaker Short‐transverse orientation. Such deflected fractures can no longer be considered to propagate in pure mode‐I. We therefore present a method to correct measured KIc values to account for deflection by calculating mode‐I and mode‐II deflection stress intensities (KId and KIId, respectively). Because of the mixed‐mode nature of deflected fractures, we adopt a fracture (Gc) energy‐based approach that allows analysis of critical fracture propagation conditions for both deflected and undeflected fractures in all orientations. We find that Gc increases as the angle from the Short‐transverse plane increases. We conclude that a modified elliptical function, previously applied to tensile strength and KIc, can be used to estimate values of Gc at angles between the Short‐transverse and Arrester orientations. Key Points Measurements of tensile strength and mode‐I fracture toughness (KIc) show that Nash Point shale is mechanically highly anisotropic We find that a fracture energy (Gc) approach is more suitable than using KIc alone, because it allows analysis of mixed mode fracture propagation An elliptical function can be used to estimate Gc for fractures propagating at angles between the Short‐transverse and Arrester directions</description><subject>anisotropy</subject><subject>Carbon capture and storage</subject><subject>Carbon sequestration</subject><subject>Crack propagation</subject><subject>Deflection</subject><subject>Elliptic functions</subject><subject>fracture energy</subject><subject>Fracture mechanics</subject><subject>Fracture toughness</subject><subject>Fractures</subject><subject>Geophysics</subject><subject>Orientation</subject><subject>Properties</subject><subject>Reservoirs</subject><subject>Sedimentary rocks</subject><subject>Shale</subject><subject>Shales</subject><subject>Storage reservoirs</subject><subject>Tensile strength</subject><subject>Wave velocity</subject><issn>2169-9313</issn><issn>2169-9356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp9kE9LAzEQxYMoWGpvfoCAV1czySbdHG2x1VJs8c95ye5O7Ja6qUmW0m_v1op4ci5vZvjNG3iEXAK7Acb1LWeQzUYMpE7FCelxUDrRQqrT3x7EORmEsGZdZd0K0h5ZTLwpY-uRLr3boo81BuosfTJhRZeubiJ9WZkNUhOooZO2KWPtmgOx8DU20XyP0dERVlXdvF-QM2s2AQc_2idvk_vX8UMyX0wfx3fzxAiVySSFwlSYpZUoUKSoVQqlTi2KSgFoadiQVVyVsuCMKSvRGi34MJNgBAcrC9EnV0ffrXefLYaYr13rm-5lzkEMQcnuoKOuj1TpXQgebb719Yfx-xxYfkgt_5tah4sjvqs3uP-XzWfT55EUTErxBYtQa8Y</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Forbes Inskip, Nathaniel D.</creator><creator>Meredith, Philip G.</creator><creator>Chandler, Michael R.</creator><creator>Gudmundsson, Agust</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-9683-5704</orcidid><orcidid>https://orcid.org/0000-0003-2193-5342</orcidid><orcidid>https://orcid.org/0000-0002-7833-3521</orcidid></search><sort><creationdate>201810</creationdate><title>Fracture Properties of Nash Point Shale as a Function of Orientation to Bedding</title><author>Forbes Inskip, Nathaniel D. ; Meredith, Philip G. ; Chandler, Michael R. ; Gudmundsson, Agust</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3685-41bade84d3be34e9641c94fe3d61195a070d26c5b2006f5efa9327851a321f5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>anisotropy</topic><topic>Carbon capture and storage</topic><topic>Carbon sequestration</topic><topic>Crack propagation</topic><topic>Deflection</topic><topic>Elliptic functions</topic><topic>fracture energy</topic><topic>Fracture mechanics</topic><topic>Fracture toughness</topic><topic>Fractures</topic><topic>Geophysics</topic><topic>Orientation</topic><topic>Properties</topic><topic>Reservoirs</topic><topic>Sedimentary rocks</topic><topic>Shale</topic><topic>Shales</topic><topic>Storage reservoirs</topic><topic>Tensile strength</topic><topic>Wave velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Forbes Inskip, Nathaniel D.</creatorcontrib><creatorcontrib>Meredith, Philip G.</creatorcontrib><creatorcontrib>Chandler, Michael R.</creatorcontrib><creatorcontrib>Gudmundsson, Agust</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Free Archive</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of geophysical research. Solid earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Forbes Inskip, Nathaniel D.</au><au>Meredith, Philip G.</au><au>Chandler, Michael R.</au><au>Gudmundsson, Agust</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fracture Properties of Nash Point Shale as a Function of Orientation to Bedding</atitle><jtitle>Journal of geophysical research. Solid earth</jtitle><date>2018-10</date><risdate>2018</risdate><volume>123</volume><issue>10</issue><spage>8428</spage><epage>8444</epage><pages>8428-8444</pages><issn>2169-9313</issn><eissn>2169-9356</eissn><abstract>Understanding how fracture networks develop in shale formations is important when exploiting unconventional hydrocarbon reservoirs and analyzing the integrity of the seals of conventional and carbon capture and storage reservoirs. Despite this importance, experimentally derived fracture data for shale remains sparse. Here we characterize shale from Nash Point in South Wales, United Kingdom, in terms of ultrasonic wave velocities, tensile strength, and fracture toughness (KIc). We measure these properties in multiple orientations, including angles oblique to the three principal fracture orientations—Short‐transverse, Arrester, and Divider. We find that the Nash Point shale is mechanically highly anisotropic, with tensile strength and KIc values lowest in the Short‐transverse orientation and highest in the Arrester and Divider orientations. Fractures that propagate in a direction oblique or normal to bedding commonly deflect toward the weaker Short‐transverse orientation. Such deflected fractures can no longer be considered to propagate in pure mode‐I. We therefore present a method to correct measured KIc values to account for deflection by calculating mode‐I and mode‐II deflection stress intensities (KId and KIId, respectively). Because of the mixed‐mode nature of deflected fractures, we adopt a fracture (Gc) energy‐based approach that allows analysis of critical fracture propagation conditions for both deflected and undeflected fractures in all orientations. We find that Gc increases as the angle from the Short‐transverse plane increases. We conclude that a modified elliptical function, previously applied to tensile strength and KIc, can be used to estimate values of Gc at angles between the Short‐transverse and Arrester orientations. Key Points Measurements of tensile strength and mode‐I fracture toughness (KIc) show that Nash Point shale is mechanically highly anisotropic We find that a fracture energy (Gc) approach is more suitable than using KIc alone, because it allows analysis of mixed mode fracture propagation An elliptical function can be used to estimate Gc for fractures propagating at angles between the Short‐transverse and Arrester directions</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2018JB015943</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-9683-5704</orcidid><orcidid>https://orcid.org/0000-0003-2193-5342</orcidid><orcidid>https://orcid.org/0000-0002-7833-3521</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9313
ispartof Journal of geophysical research. Solid earth, 2018-10, Vol.123 (10), p.8428-8444
issn 2169-9313
2169-9356
language eng
recordid cdi_proquest_journals_2137165932
source Wiley Online Library Journals; Wiley Free Archive
subjects anisotropy
Carbon capture and storage
Carbon sequestration
Crack propagation
Deflection
Elliptic functions
fracture energy
Fracture mechanics
Fracture toughness
Fractures
Geophysics
Orientation
Properties
Reservoirs
Sedimentary rocks
Shale
Shales
Storage reservoirs
Tensile strength
Wave velocity
title Fracture Properties of Nash Point Shale as a Function of Orientation to Bedding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A31%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fracture%20Properties%20of%20Nash%20Point%20Shale%20as%20a%20Function%20of%20Orientation%20to%20Bedding&rft.jtitle=Journal%20of%20geophysical%20research.%20Solid%20earth&rft.au=Forbes%20Inskip,%20Nathaniel%20D.&rft.date=2018-10&rft.volume=123&rft.issue=10&rft.spage=8428&rft.epage=8444&rft.pages=8428-8444&rft.issn=2169-9313&rft.eissn=2169-9356&rft_id=info:doi/10.1029/2018JB015943&rft_dat=%3Cproquest_cross%3E2137165932%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2137165932&rft_id=info:pmid/&rfr_iscdi=true