Prediction of river flow using hybrid neuro-fuzzy models

The complex nature of hydrological phenomena, like rainfall and river flow, causes some limitations for some admired soft computing models in order to predict the phenomenon. Evolutionary algorithms (EA) are novel methods that used to cover the weaknesses of the classic training algorithms, such as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arabian journal of geosciences 2018-11, Vol.11 (22), p.1-14, Article 718
Hauptverfasser: Azad, Armin, Farzin, Saeed, Kashi, Hamed, Sanikhani, Hadi, Karami, Hojat, Kisi, Ozgur
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue 22
container_start_page 1
container_title Arabian journal of geosciences
container_volume 11
creator Azad, Armin
Farzin, Saeed
Kashi, Hamed
Sanikhani, Hadi
Karami, Hojat
Kisi, Ozgur
description The complex nature of hydrological phenomena, like rainfall and river flow, causes some limitations for some admired soft computing models in order to predict the phenomenon. Evolutionary algorithms (EA) are novel methods that used to cover the weaknesses of the classic training algorithms, such as trapping in local optima, poor performance in networks with large parameters, over-fitting, and etc. In this study, some evolutionary algorithms, including genetic algorithm (GA), ant colony optimization for continuous domain (ACO R ), and particle swarm optimization (PSO), have been used to train adaptive neuro-fuzzy inference system (ANFIS) in order to predict river flow. For this purpose, classic and hybrid ANFIS models were trained using river flow data obtained from upstream stations to predict 1-, 3-, 5-, and 7-day ahead river flow of downstream station. The best inputs were selected using correlation coefficient and a sensitivity analysis test (cosine amplitude). The results showed that PSO improved the performance of classic ANFIS in all the periods such that the averages of coefficient of determination, R 2 , root mean square error, RMSE (m 3 /s), mean absolute relative error, MARE, and Nash-Sutcliffe efficiency coefficient (NSE) were improved up to 0.19, 0.30, 43.8, and 0.13%, respectively. Classic ANFIS was only capable to predict river flow in 1-day ahead while EA improved this ability to 5-day ahead. Cosine amplitude method was recognized as an appropriate sensitivity analysis method in order to select the best inputs.
doi_str_mv 10.1007/s12517-018-4079-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2137138177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2137138177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-ecaa55f41ba84a55248e46b3164057f5b391aff56b6c4518508cc02bda3012003</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWKsP4C7gOnrO5NqlFG9Q0IWuQ2YmqVPaSU06yvTpnTKiK1fnh_Nf4CPkEuEaAfRNxkKiZoCGCdAzBkdkgkYppiU3x78a8ZSc5bwCUAa0mRDzknzdVLsmtjQGmppPn2hYxy_a5aZd0ve-TE1NW9-lyEK33_d0E2u_zufkJLh19hc_d0re7u9e549s8fzwNL9dsIqj2jFfOSdlEFg6IwZVCOOFKoefAKmDLPkMXQhSlaoSEo0EU1VQlLXjgAUAn5KrsXeb4kfn886uYpfaYdIWyDVyg1oPLhxdVYo5Jx_sNjUbl3qLYA-A7AjIDoDsAZA9NBdjJg_edunTX_P_oW_fz2dH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2137138177</pqid></control><display><type>article</type><title>Prediction of river flow using hybrid neuro-fuzzy models</title><source>SpringerLink Journals - AutoHoldings</source><creator>Azad, Armin ; Farzin, Saeed ; Kashi, Hamed ; Sanikhani, Hadi ; Karami, Hojat ; Kisi, Ozgur</creator><creatorcontrib>Azad, Armin ; Farzin, Saeed ; Kashi, Hamed ; Sanikhani, Hadi ; Karami, Hojat ; Kisi, Ozgur</creatorcontrib><description>The complex nature of hydrological phenomena, like rainfall and river flow, causes some limitations for some admired soft computing models in order to predict the phenomenon. Evolutionary algorithms (EA) are novel methods that used to cover the weaknesses of the classic training algorithms, such as trapping in local optima, poor performance in networks with large parameters, over-fitting, and etc. In this study, some evolutionary algorithms, including genetic algorithm (GA), ant colony optimization for continuous domain (ACO R ), and particle swarm optimization (PSO), have been used to train adaptive neuro-fuzzy inference system (ANFIS) in order to predict river flow. For this purpose, classic and hybrid ANFIS models were trained using river flow data obtained from upstream stations to predict 1-, 3-, 5-, and 7-day ahead river flow of downstream station. The best inputs were selected using correlation coefficient and a sensitivity analysis test (cosine amplitude). The results showed that PSO improved the performance of classic ANFIS in all the periods such that the averages of coefficient of determination, R 2 , root mean square error, RMSE (m 3 /s), mean absolute relative error, MARE, and Nash-Sutcliffe efficiency coefficient (NSE) were improved up to 0.19, 0.30, 43.8, and 0.13%, respectively. Classic ANFIS was only capable to predict river flow in 1-day ahead while EA improved this ability to 5-day ahead. Cosine amplitude method was recognized as an appropriate sensitivity analysis method in order to select the best inputs.</description><identifier>ISSN: 1866-7511</identifier><identifier>EISSN: 1866-7538</identifier><identifier>DOI: 10.1007/s12517-018-4079-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adaptive systems ; Algorithms ; Amplitude ; Amplitudes ; Ant colony optimization ; Artificial neural networks ; Correlation analysis ; Correlation coefficient ; Correlation coefficients ; Earth and Environmental Science ; Earth science ; Earth Sciences ; Evolutionary algorithms ; Fuzzy logic ; Fuzzy systems ; Genetic algorithms ; Hydrologic models ; Hydrology ; Mathematical models ; Methods ; Original Paper ; Particle swarm optimization ; Rain ; Rainfall ; River flow ; Rivers ; Root-mean-square errors ; Sensitivity analysis ; Soft computing ; Stream flow ; Training</subject><ispartof>Arabian journal of geosciences, 2018-11, Vol.11 (22), p.1-14, Article 718</ispartof><rights>Saudi Society for Geosciences 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-ecaa55f41ba84a55248e46b3164057f5b391aff56b6c4518508cc02bda3012003</citedby><cites>FETCH-LOGICAL-c316t-ecaa55f41ba84a55248e46b3164057f5b391aff56b6c4518508cc02bda3012003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12517-018-4079-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12517-018-4079-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Azad, Armin</creatorcontrib><creatorcontrib>Farzin, Saeed</creatorcontrib><creatorcontrib>Kashi, Hamed</creatorcontrib><creatorcontrib>Sanikhani, Hadi</creatorcontrib><creatorcontrib>Karami, Hojat</creatorcontrib><creatorcontrib>Kisi, Ozgur</creatorcontrib><title>Prediction of river flow using hybrid neuro-fuzzy models</title><title>Arabian journal of geosciences</title><addtitle>Arab J Geosci</addtitle><description>The complex nature of hydrological phenomena, like rainfall and river flow, causes some limitations for some admired soft computing models in order to predict the phenomenon. Evolutionary algorithms (EA) are novel methods that used to cover the weaknesses of the classic training algorithms, such as trapping in local optima, poor performance in networks with large parameters, over-fitting, and etc. In this study, some evolutionary algorithms, including genetic algorithm (GA), ant colony optimization for continuous domain (ACO R ), and particle swarm optimization (PSO), have been used to train adaptive neuro-fuzzy inference system (ANFIS) in order to predict river flow. For this purpose, classic and hybrid ANFIS models were trained using river flow data obtained from upstream stations to predict 1-, 3-, 5-, and 7-day ahead river flow of downstream station. The best inputs were selected using correlation coefficient and a sensitivity analysis test (cosine amplitude). The results showed that PSO improved the performance of classic ANFIS in all the periods such that the averages of coefficient of determination, R 2 , root mean square error, RMSE (m 3 /s), mean absolute relative error, MARE, and Nash-Sutcliffe efficiency coefficient (NSE) were improved up to 0.19, 0.30, 43.8, and 0.13%, respectively. Classic ANFIS was only capable to predict river flow in 1-day ahead while EA improved this ability to 5-day ahead. Cosine amplitude method was recognized as an appropriate sensitivity analysis method in order to select the best inputs.</description><subject>Adaptive systems</subject><subject>Algorithms</subject><subject>Amplitude</subject><subject>Amplitudes</subject><subject>Ant colony optimization</subject><subject>Artificial neural networks</subject><subject>Correlation analysis</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Earth and Environmental Science</subject><subject>Earth science</subject><subject>Earth Sciences</subject><subject>Evolutionary algorithms</subject><subject>Fuzzy logic</subject><subject>Fuzzy systems</subject><subject>Genetic algorithms</subject><subject>Hydrologic models</subject><subject>Hydrology</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Original Paper</subject><subject>Particle swarm optimization</subject><subject>Rain</subject><subject>Rainfall</subject><subject>River flow</subject><subject>Rivers</subject><subject>Root-mean-square errors</subject><subject>Sensitivity analysis</subject><subject>Soft computing</subject><subject>Stream flow</subject><subject>Training</subject><issn>1866-7511</issn><issn>1866-7538</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKAzEUhoMoWKsP4C7gOnrO5NqlFG9Q0IWuQ2YmqVPaSU06yvTpnTKiK1fnh_Nf4CPkEuEaAfRNxkKiZoCGCdAzBkdkgkYppiU3x78a8ZSc5bwCUAa0mRDzknzdVLsmtjQGmppPn2hYxy_a5aZd0ve-TE1NW9-lyEK33_d0E2u_zufkJLh19hc_d0re7u9e549s8fzwNL9dsIqj2jFfOSdlEFg6IwZVCOOFKoefAKmDLPkMXQhSlaoSEo0EU1VQlLXjgAUAn5KrsXeb4kfn886uYpfaYdIWyDVyg1oPLhxdVYo5Jx_sNjUbl3qLYA-A7AjIDoDsAZA9NBdjJg_edunTX_P_oW_fz2dH</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Azad, Armin</creator><creator>Farzin, Saeed</creator><creator>Kashi, Hamed</creator><creator>Sanikhani, Hadi</creator><creator>Karami, Hojat</creator><creator>Kisi, Ozgur</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20181101</creationdate><title>Prediction of river flow using hybrid neuro-fuzzy models</title><author>Azad, Armin ; Farzin, Saeed ; Kashi, Hamed ; Sanikhani, Hadi ; Karami, Hojat ; Kisi, Ozgur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-ecaa55f41ba84a55248e46b3164057f5b391aff56b6c4518508cc02bda3012003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptive systems</topic><topic>Algorithms</topic><topic>Amplitude</topic><topic>Amplitudes</topic><topic>Ant colony optimization</topic><topic>Artificial neural networks</topic><topic>Correlation analysis</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Earth and Environmental Science</topic><topic>Earth science</topic><topic>Earth Sciences</topic><topic>Evolutionary algorithms</topic><topic>Fuzzy logic</topic><topic>Fuzzy systems</topic><topic>Genetic algorithms</topic><topic>Hydrologic models</topic><topic>Hydrology</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Original Paper</topic><topic>Particle swarm optimization</topic><topic>Rain</topic><topic>Rainfall</topic><topic>River flow</topic><topic>Rivers</topic><topic>Root-mean-square errors</topic><topic>Sensitivity analysis</topic><topic>Soft computing</topic><topic>Stream flow</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azad, Armin</creatorcontrib><creatorcontrib>Farzin, Saeed</creatorcontrib><creatorcontrib>Kashi, Hamed</creatorcontrib><creatorcontrib>Sanikhani, Hadi</creatorcontrib><creatorcontrib>Karami, Hojat</creatorcontrib><creatorcontrib>Kisi, Ozgur</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Arabian journal of geosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azad, Armin</au><au>Farzin, Saeed</au><au>Kashi, Hamed</au><au>Sanikhani, Hadi</au><au>Karami, Hojat</au><au>Kisi, Ozgur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of river flow using hybrid neuro-fuzzy models</atitle><jtitle>Arabian journal of geosciences</jtitle><stitle>Arab J Geosci</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>11</volume><issue>22</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><artnum>718</artnum><issn>1866-7511</issn><eissn>1866-7538</eissn><abstract>The complex nature of hydrological phenomena, like rainfall and river flow, causes some limitations for some admired soft computing models in order to predict the phenomenon. Evolutionary algorithms (EA) are novel methods that used to cover the weaknesses of the classic training algorithms, such as trapping in local optima, poor performance in networks with large parameters, over-fitting, and etc. In this study, some evolutionary algorithms, including genetic algorithm (GA), ant colony optimization for continuous domain (ACO R ), and particle swarm optimization (PSO), have been used to train adaptive neuro-fuzzy inference system (ANFIS) in order to predict river flow. For this purpose, classic and hybrid ANFIS models were trained using river flow data obtained from upstream stations to predict 1-, 3-, 5-, and 7-day ahead river flow of downstream station. The best inputs were selected using correlation coefficient and a sensitivity analysis test (cosine amplitude). The results showed that PSO improved the performance of classic ANFIS in all the periods such that the averages of coefficient of determination, R 2 , root mean square error, RMSE (m 3 /s), mean absolute relative error, MARE, and Nash-Sutcliffe efficiency coefficient (NSE) were improved up to 0.19, 0.30, 43.8, and 0.13%, respectively. Classic ANFIS was only capable to predict river flow in 1-day ahead while EA improved this ability to 5-day ahead. Cosine amplitude method was recognized as an appropriate sensitivity analysis method in order to select the best inputs.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12517-018-4079-0</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1866-7511
ispartof Arabian journal of geosciences, 2018-11, Vol.11 (22), p.1-14, Article 718
issn 1866-7511
1866-7538
language eng
recordid cdi_proquest_journals_2137138177
source SpringerLink Journals - AutoHoldings
subjects Adaptive systems
Algorithms
Amplitude
Amplitudes
Ant colony optimization
Artificial neural networks
Correlation analysis
Correlation coefficient
Correlation coefficients
Earth and Environmental Science
Earth science
Earth Sciences
Evolutionary algorithms
Fuzzy logic
Fuzzy systems
Genetic algorithms
Hydrologic models
Hydrology
Mathematical models
Methods
Original Paper
Particle swarm optimization
Rain
Rainfall
River flow
Rivers
Root-mean-square errors
Sensitivity analysis
Soft computing
Stream flow
Training
title Prediction of river flow using hybrid neuro-fuzzy models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T05%3A41%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20river%20flow%20using%20hybrid%20neuro-fuzzy%20models&rft.jtitle=Arabian%20journal%20of%20geosciences&rft.au=Azad,%20Armin&rft.date=2018-11-01&rft.volume=11&rft.issue=22&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.artnum=718&rft.issn=1866-7511&rft.eissn=1866-7538&rft_id=info:doi/10.1007/s12517-018-4079-0&rft_dat=%3Cproquest_cross%3E2137138177%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2137138177&rft_id=info:pmid/&rfr_iscdi=true