The complete characterization of the minimum size supertail in a subspace partition

Let q be a prime power and let n be a positive integer. Let V=V(n,q) denote the vector space of dimension n over Fq. A subspace partitionP of V is a collection of subspaces of V with the property that each nonzero vector is in exactly one of the subspaces in P. Suppose that d1,…,dk are the different...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications 2018-12, Vol.559, p.172-180
Hauptverfasser: Năstase, Esmeralda L., Sissokho, Papa A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 180
container_issue
container_start_page 172
container_title Linear algebra and its applications
container_volume 559
creator Năstase, Esmeralda L.
Sissokho, Papa A.
description Let q be a prime power and let n be a positive integer. Let V=V(n,q) denote the vector space of dimension n over Fq. A subspace partitionP of V is a collection of subspaces of V with the property that each nonzero vector is in exactly one of the subspaces in P. Suppose that d1,…,dk are the different dimensions, in increasing order, that occur in the subspace partition P. For any integer s, with 2≤s≤k, the ds-supertailS of P is the collection of all subspaces X∈P such that dim⁡X
doi_str_mv 10.1016/j.laa.2018.09.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2137118073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379518304348</els_id><sourcerecordid>2137118073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-d3368efab8bce762569b21a59789da045cbed02a2fd19188d59122510f78ff173</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG8Fz60z6bZJ8SSLX7DgwfUc0nTKpvTLJCu4v94s69nTzMD7zAwPY7cIGQKW913Wa51xQJlBlQGIM7ZAKfIUZVGeswUAX6W5qIpLduV9BwArAXzBPrY7Ssw0zD2F2Oy00yaQswcd7DQmU5uEGBjsaIf9kHh7oMTvZ3JB2z6xY6LjWPtZG0pm7YI9UtfsotW9p5u_umSfz0_b9Wu6eX95Wz9uUpNzCGmT56WkVteyNiRKXpRVzVEXlZBVo2FVmJoa4Jq3DVYoZVNUyHmB0ArZtijyJbs77Z3d9LUnH1Q37d0YTyqOuUCUIPKYwlPKuMl7R62anR20-1EI6uhOdSq6U0d3CioV3UXm4cRQfP_bklPeWBoNNdaRCaqZ7D_0LzEodyc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2137118073</pqid></control><display><type>article</type><title>The complete characterization of the minimum size supertail in a subspace partition</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Năstase, Esmeralda L. ; Sissokho, Papa A.</creator><creatorcontrib>Năstase, Esmeralda L. ; Sissokho, Papa A.</creatorcontrib><description>Let q be a prime power and let n be a positive integer. Let V=V(n,q) denote the vector space of dimension n over Fq. A subspace partitionP of V is a collection of subspaces of V with the property that each nonzero vector is in exactly one of the subspaces in P. Suppose that d1,…,dk are the different dimensions, in increasing order, that occur in the subspace partition P. For any integer s, with 2≤s≤k, the ds-supertailS of P is the collection of all subspaces X∈P such that dim⁡X&lt;ds. It was shown that |S|≥σq(ds,ds−1), where σq(ds,ds−1) denotes the minimum number of subspaces over all subspace partitions of V(ds,q) in which the largest subspace has dimension ds−1. Moreover, it was shown that if ds≥2ds−1 and equality holds in the previous bound on |S|, then the union of the subspaces in S forms a subspace. This characterization was also conjectured to hold if ds&lt;2ds−1. This conjecture was recently proved in certain cases. In this paper, we use a much simpler approach to completely settle this conjecture.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2018.09.007</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Collection ; Integral equations ; Linear algebra ; Partitions (mathematics) ; Subspace partition ; Subspaces ; Supertail of a subspace partition ; Vector space ; Vector space partition</subject><ispartof>Linear algebra and its applications, 2018-12, Vol.559, p.172-180</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. Dec 15, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c320t-d3368efab8bce762569b21a59789da045cbed02a2fd19188d59122510f78ff173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0024379518304348$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Năstase, Esmeralda L.</creatorcontrib><creatorcontrib>Sissokho, Papa A.</creatorcontrib><title>The complete characterization of the minimum size supertail in a subspace partition</title><title>Linear algebra and its applications</title><description>Let q be a prime power and let n be a positive integer. Let V=V(n,q) denote the vector space of dimension n over Fq. A subspace partitionP of V is a collection of subspaces of V with the property that each nonzero vector is in exactly one of the subspaces in P. Suppose that d1,…,dk are the different dimensions, in increasing order, that occur in the subspace partition P. For any integer s, with 2≤s≤k, the ds-supertailS of P is the collection of all subspaces X∈P such that dim⁡X&lt;ds. It was shown that |S|≥σq(ds,ds−1), where σq(ds,ds−1) denotes the minimum number of subspaces over all subspace partitions of V(ds,q) in which the largest subspace has dimension ds−1. Moreover, it was shown that if ds≥2ds−1 and equality holds in the previous bound on |S|, then the union of the subspaces in S forms a subspace. This characterization was also conjectured to hold if ds&lt;2ds−1. This conjecture was recently proved in certain cases. In this paper, we use a much simpler approach to completely settle this conjecture.</description><subject>Collection</subject><subject>Integral equations</subject><subject>Linear algebra</subject><subject>Partitions (mathematics)</subject><subject>Subspace partition</subject><subject>Subspaces</subject><subject>Supertail of a subspace partition</subject><subject>Vector space</subject><subject>Vector space partition</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AG8Fz60z6bZJ8SSLX7DgwfUc0nTKpvTLJCu4v94s69nTzMD7zAwPY7cIGQKW913Wa51xQJlBlQGIM7ZAKfIUZVGeswUAX6W5qIpLduV9BwArAXzBPrY7Ssw0zD2F2Oy00yaQswcd7DQmU5uEGBjsaIf9kHh7oMTvZ3JB2z6xY6LjWPtZG0pm7YI9UtfsotW9p5u_umSfz0_b9Wu6eX95Wz9uUpNzCGmT56WkVteyNiRKXpRVzVEXlZBVo2FVmJoa4Jq3DVYoZVNUyHmB0ArZtijyJbs77Z3d9LUnH1Q37d0YTyqOuUCUIPKYwlPKuMl7R62anR20-1EI6uhOdSq6U0d3CioV3UXm4cRQfP_bklPeWBoNNdaRCaqZ7D_0LzEodyc</recordid><startdate>20181215</startdate><enddate>20181215</enddate><creator>Năstase, Esmeralda L.</creator><creator>Sissokho, Papa A.</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20181215</creationdate><title>The complete characterization of the minimum size supertail in a subspace partition</title><author>Năstase, Esmeralda L. ; Sissokho, Papa A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-d3368efab8bce762569b21a59789da045cbed02a2fd19188d59122510f78ff173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Collection</topic><topic>Integral equations</topic><topic>Linear algebra</topic><topic>Partitions (mathematics)</topic><topic>Subspace partition</topic><topic>Subspaces</topic><topic>Supertail of a subspace partition</topic><topic>Vector space</topic><topic>Vector space partition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Năstase, Esmeralda L.</creatorcontrib><creatorcontrib>Sissokho, Papa A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Năstase, Esmeralda L.</au><au>Sissokho, Papa A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The complete characterization of the minimum size supertail in a subspace partition</atitle><jtitle>Linear algebra and its applications</jtitle><date>2018-12-15</date><risdate>2018</risdate><volume>559</volume><spage>172</spage><epage>180</epage><pages>172-180</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>Let q be a prime power and let n be a positive integer. Let V=V(n,q) denote the vector space of dimension n over Fq. A subspace partitionP of V is a collection of subspaces of V with the property that each nonzero vector is in exactly one of the subspaces in P. Suppose that d1,…,dk are the different dimensions, in increasing order, that occur in the subspace partition P. For any integer s, with 2≤s≤k, the ds-supertailS of P is the collection of all subspaces X∈P such that dim⁡X&lt;ds. It was shown that |S|≥σq(ds,ds−1), where σq(ds,ds−1) denotes the minimum number of subspaces over all subspace partitions of V(ds,q) in which the largest subspace has dimension ds−1. Moreover, it was shown that if ds≥2ds−1 and equality holds in the previous bound on |S|, then the union of the subspaces in S forms a subspace. This characterization was also conjectured to hold if ds&lt;2ds−1. This conjecture was recently proved in certain cases. In this paper, we use a much simpler approach to completely settle this conjecture.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2018.09.007</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-3795
ispartof Linear algebra and its applications, 2018-12, Vol.559, p.172-180
issn 0024-3795
1873-1856
language eng
recordid cdi_proquest_journals_2137118073
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Collection
Integral equations
Linear algebra
Partitions (mathematics)
Subspace partition
Subspaces
Supertail of a subspace partition
Vector space
Vector space partition
title The complete characterization of the minimum size supertail in a subspace partition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T01%3A01%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20complete%20characterization%20of%20the%20minimum%20size%20supertail%20in%20a%20subspace%20partition&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=N%C4%83stase,%20Esmeralda%20L.&rft.date=2018-12-15&rft.volume=559&rft.spage=172&rft.epage=180&rft.pages=172-180&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2018.09.007&rft_dat=%3Cproquest_cross%3E2137118073%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2137118073&rft_id=info:pmid/&rft_els_id=S0024379518304348&rfr_iscdi=true