Plastic Flow Properties and Microstructural Evolution in an Ultrafine-Grained Al-Mg-Si Alloy at Elevated Temperatures

An AA6082 alloy was subjected to eight passes of equal channel angular pressing at 100 °C, resulting in an ultrafine grain size of 0.2 to 0.4  μ m. The tensile deformation behavior of the material was studied over the temperature range of 100 °C to 350 °C and strain rate range of 10 −4 to 10 −1  s −...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2009-12, Vol.40 (13), p.3294-3303
Hauptverfasser: Kashyap, B.P., Hodgson, P.D., Estrin, Y., Timokhina, I., Barnett, M.R., Sabirov, I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3303
container_issue 13
container_start_page 3294
container_title Metallurgical and materials transactions. A, Physical metallurgy and materials science
container_volume 40
creator Kashyap, B.P.
Hodgson, P.D.
Estrin, Y.
Timokhina, I.
Barnett, M.R.
Sabirov, I.
description An AA6082 alloy was subjected to eight passes of equal channel angular pressing at 100 °C, resulting in an ultrafine grain size of 0.2 to 0.4  μ m. The tensile deformation behavior of the material was studied over the temperature range of 100 °C to 350 °C and strain rate range of 10 −4 to 10 −1  s −1 . The evolution of microstructure under tensile deformation was investigated by analyzing both the deformation relief on the specimen surface and the dislocation structure. While extensive microshear banding was found at the lower temperatures of 100 °C to 150 °C, deformation at higher temperatures was characterized by cooperative grain boundary sliding and the development of a bimodal microstructure. Dislocation glide was identified as the main deformation mechanism within coarse grains, whereas no dislocation activity was apparent in the ultrafine grains.
doi_str_mv 10.1007/s11661-009-0036-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_213707813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1917237151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-2b78e94f709d8ee64fa259feba9a3f95378feec7b5682db73498040db6faa07a3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoso-PkDvAXBY3SStElzFFk_QFFQz2HaJhKJ7Zqkyv57s6zoyUOYgXnmSfJW1TGDMwagzhNjUjIKoMsRksqtao81taBM17BdelCCNpKL3Wo_pTcAYFrIvWp-DJiy78lVmL7IY5yWNmZvE8FxIPe-j1PKce7zHDGQxecU5uynkfixAOQl5IjOj5ZeRyxlIBeB3r_SJ1-aMK0IZrII9hNzGT3b9-LGYrLpsNpxGJI9-qkH1cvV4vnyht49XN9eXtzRvmYsU96p1uraKdBDa62sHfJGO9uhRuF0I1TrrO1V18iWD50StW6hhqGTDhEUioPqZONdxuljtimbt2mOY7nScCYUqJaJArENtP5sitaZZfTvGFeGgVmHazbhmhKuWYdrZNk5_RFj6jG4iGPv0-8i5xxarVXh-IZLZTS-2vj3gP_l36f-isQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213707813</pqid></control><display><type>article</type><title>Plastic Flow Properties and Microstructural Evolution in an Ultrafine-Grained Al-Mg-Si Alloy at Elevated Temperatures</title><source>Springer Nature - Complete Springer Journals</source><creator>Kashyap, B.P. ; Hodgson, P.D. ; Estrin, Y. ; Timokhina, I. ; Barnett, M.R. ; Sabirov, I.</creator><creatorcontrib>Kashyap, B.P. ; Hodgson, P.D. ; Estrin, Y. ; Timokhina, I. ; Barnett, M.R. ; Sabirov, I.</creatorcontrib><description>An AA6082 alloy was subjected to eight passes of equal channel angular pressing at 100 °C, resulting in an ultrafine grain size of 0.2 to 0.4  μ m. The tensile deformation behavior of the material was studied over the temperature range of 100 °C to 350 °C and strain rate range of 10 −4 to 10 −1  s −1 . The evolution of microstructure under tensile deformation was investigated by analyzing both the deformation relief on the specimen surface and the dislocation structure. While extensive microshear banding was found at the lower temperatures of 100 °C to 150 °C, deformation at higher temperatures was characterized by cooperative grain boundary sliding and the development of a bimodal microstructure. Dislocation glide was identified as the main deformation mechanism within coarse grains, whereas no dislocation activity was apparent in the ultrafine grains.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-009-0036-6</identifier><identifier>CODEN: MMTAEB</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Aluminum alloys ; Applied sciences ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Corrosion resistance ; Exact sciences and technology ; Grain boundaries ; Materials Science ; Mechanical properties ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metallic Materials ; Metallurgy ; Metals. Metallurgy ; Nanotechnology ; Plastic deformation ; Structural Materials ; Surfaces and Interfaces ; Thin Films ; Transmission electron microscopy</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2009-12, Vol.40 (13), p.3294-3303</ispartof><rights>The Minerals, Metals &amp; Materials Society and ASM International 2009</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Minerals, Metals &amp; Materials Society Dec 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-2b78e94f709d8ee64fa259feba9a3f95378feec7b5682db73498040db6faa07a3</citedby><cites>FETCH-LOGICAL-c411t-2b78e94f709d8ee64fa259feba9a3f95378feec7b5682db73498040db6faa07a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-009-0036-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-009-0036-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22208997$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kashyap, B.P.</creatorcontrib><creatorcontrib>Hodgson, P.D.</creatorcontrib><creatorcontrib>Estrin, Y.</creatorcontrib><creatorcontrib>Timokhina, I.</creatorcontrib><creatorcontrib>Barnett, M.R.</creatorcontrib><creatorcontrib>Sabirov, I.</creatorcontrib><title>Plastic Flow Properties and Microstructural Evolution in an Ultrafine-Grained Al-Mg-Si Alloy at Elevated Temperatures</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>An AA6082 alloy was subjected to eight passes of equal channel angular pressing at 100 °C, resulting in an ultrafine grain size of 0.2 to 0.4  μ m. The tensile deformation behavior of the material was studied over the temperature range of 100 °C to 350 °C and strain rate range of 10 −4 to 10 −1  s −1 . The evolution of microstructure under tensile deformation was investigated by analyzing both the deformation relief on the specimen surface and the dislocation structure. While extensive microshear banding was found at the lower temperatures of 100 °C to 150 °C, deformation at higher temperatures was characterized by cooperative grain boundary sliding and the development of a bimodal microstructure. Dislocation glide was identified as the main deformation mechanism within coarse grains, whereas no dislocation activity was apparent in the ultrafine grains.</description><subject>Aluminum alloys</subject><subject>Applied sciences</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Corrosion resistance</subject><subject>Exact sciences and technology</subject><subject>Grain boundaries</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metallic Materials</subject><subject>Metallurgy</subject><subject>Metals. Metallurgy</subject><subject>Nanotechnology</subject><subject>Plastic deformation</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Transmission electron microscopy</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1LxDAQhoso-PkDvAXBY3SStElzFFk_QFFQz2HaJhKJ7Zqkyv57s6zoyUOYgXnmSfJW1TGDMwagzhNjUjIKoMsRksqtao81taBM17BdelCCNpKL3Wo_pTcAYFrIvWp-DJiy78lVmL7IY5yWNmZvE8FxIPe-j1PKce7zHDGQxecU5uynkfixAOQl5IjOj5ZeRyxlIBeB3r_SJ1-aMK0IZrII9hNzGT3b9-LGYrLpsNpxGJI9-qkH1cvV4vnyht49XN9eXtzRvmYsU96p1uraKdBDa62sHfJGO9uhRuF0I1TrrO1V18iWD50StW6hhqGTDhEUioPqZONdxuljtimbt2mOY7nScCYUqJaJArENtP5sitaZZfTvGFeGgVmHazbhmhKuWYdrZNk5_RFj6jG4iGPv0-8i5xxarVXh-IZLZTS-2vj3gP_l36f-isQ</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Kashyap, B.P.</creator><creator>Hodgson, P.D.</creator><creator>Estrin, Y.</creator><creator>Timokhina, I.</creator><creator>Barnett, M.R.</creator><creator>Sabirov, I.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20091201</creationdate><title>Plastic Flow Properties and Microstructural Evolution in an Ultrafine-Grained Al-Mg-Si Alloy at Elevated Temperatures</title><author>Kashyap, B.P. ; Hodgson, P.D. ; Estrin, Y. ; Timokhina, I. ; Barnett, M.R. ; Sabirov, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-2b78e94f709d8ee64fa259feba9a3f95378feec7b5682db73498040db6faa07a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Aluminum alloys</topic><topic>Applied sciences</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Corrosion resistance</topic><topic>Exact sciences and technology</topic><topic>Grain boundaries</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metallic Materials</topic><topic>Metallurgy</topic><topic>Metals. Metallurgy</topic><topic>Nanotechnology</topic><topic>Plastic deformation</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kashyap, B.P.</creatorcontrib><creatorcontrib>Hodgson, P.D.</creatorcontrib><creatorcontrib>Estrin, Y.</creatorcontrib><creatorcontrib>Timokhina, I.</creatorcontrib><creatorcontrib>Barnett, M.R.</creatorcontrib><creatorcontrib>Sabirov, I.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kashyap, B.P.</au><au>Hodgson, P.D.</au><au>Estrin, Y.</au><au>Timokhina, I.</au><au>Barnett, M.R.</au><au>Sabirov, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plastic Flow Properties and Microstructural Evolution in an Ultrafine-Grained Al-Mg-Si Alloy at Elevated Temperatures</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2009-12-01</date><risdate>2009</risdate><volume>40</volume><issue>13</issue><spage>3294</spage><epage>3303</epage><pages>3294-3303</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><coden>MMTAEB</coden><abstract>An AA6082 alloy was subjected to eight passes of equal channel angular pressing at 100 °C, resulting in an ultrafine grain size of 0.2 to 0.4  μ m. The tensile deformation behavior of the material was studied over the temperature range of 100 °C to 350 °C and strain rate range of 10 −4 to 10 −1  s −1 . The evolution of microstructure under tensile deformation was investigated by analyzing both the deformation relief on the specimen surface and the dislocation structure. While extensive microshear banding was found at the lower temperatures of 100 °C to 150 °C, deformation at higher temperatures was characterized by cooperative grain boundary sliding and the development of a bimodal microstructure. Dislocation glide was identified as the main deformation mechanism within coarse grains, whereas no dislocation activity was apparent in the ultrafine grains.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11661-009-0036-6</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-5623
ispartof Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2009-12, Vol.40 (13), p.3294-3303
issn 1073-5623
1543-1940
language eng
recordid cdi_proquest_journals_213707813
source Springer Nature - Complete Springer Journals
subjects Aluminum alloys
Applied sciences
Characterization and Evaluation of Materials
Chemistry and Materials Science
Corrosion resistance
Exact sciences and technology
Grain boundaries
Materials Science
Mechanical properties
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Metallic Materials
Metallurgy
Metals. Metallurgy
Nanotechnology
Plastic deformation
Structural Materials
Surfaces and Interfaces
Thin Films
Transmission electron microscopy
title Plastic Flow Properties and Microstructural Evolution in an Ultrafine-Grained Al-Mg-Si Alloy at Elevated Temperatures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T08%3A09%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plastic%20Flow%20Properties%20and%20Microstructural%20Evolution%20in%20an%20Ultrafine-Grained%20Al-Mg-Si%20Alloy%20at%20Elevated%20Temperatures&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Kashyap,%20B.P.&rft.date=2009-12-01&rft.volume=40&rft.issue=13&rft.spage=3294&rft.epage=3303&rft.pages=3294-3303&rft.issn=1073-5623&rft.eissn=1543-1940&rft.coden=MMTAEB&rft_id=info:doi/10.1007/s11661-009-0036-6&rft_dat=%3Cproquest_cross%3E1917237151%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213707813&rft_id=info:pmid/&rfr_iscdi=true