On the Dynamics of the Material with Transformed Microstructure

Numerous experimental studies on shock wave loading of metals have shown by electron microscopy that the crystal structure of the material can undergo transformation in a certain impactor velocity range. At the macroscale, these changes are observed as energy losses associated with the formation of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical mesomechanics 2018-09, Vol.21 (5), p.379-389
Hauptverfasser: Morozov, N. F., Indeitsev, D. A., Semenov, B. N., Vakulenko, S. A., Skubov, D. Yu, Lukin, A. V., Popov, I. A., Vavilov, D. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 389
container_issue 5
container_start_page 379
container_title Physical mesomechanics
container_volume 21
creator Morozov, N. F.
Indeitsev, D. A.
Semenov, B. N.
Vakulenko, S. A.
Skubov, D. Yu
Lukin, A. V.
Popov, I. A.
Vavilov, D. S.
description Numerous experimental studies on shock wave loading of metals have shown by electron microscopy that the crystal structure of the material can undergo transformation in a certain impactor velocity range. At the macroscale, these changes are observed as energy losses associated with the formation of a new structure. The losses are manifested on the time-velocity profile of the rear target surface which contains key information about the material properties. In this paper, a two-component model of a material with a nonlinear internal interaction force is proposed for the description of structural transformations, taking into account the periodic structure of the material. Dynamic equations are written with respect to the motion of the center of mass of the components acting as a measured macroparameter, as well as with respect to their relative displacement serving as the internal degree of freedom responsible for structural transformations. The proposed model is applied to solve a quasi-static problem of the kinematic extension of a two-component rod in order to determine the parameters of a nonmonotonic stressstrain curve, which is often used in describing materials subjected to phase transformations. By solving a dynamic problem of nonstationary impact on the material by a short rectangular pulse, the effect of nonstationary wave damping is demonstrated which is associated with the wave energy dissipation in structural changes of the material. An analytical expression is obtained on the basis of a continuous-discrete analogy for estimating the duration of structural transformations and the parameter characterizing the internal interaction force between the components. The conclusions are confirmed by a numerical solution of a nonlinear Cauchy problem within the finite difference framework.
doi_str_mv 10.1134/S1029959918050016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2136985660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2136985660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-9d04ab58cf182289957ec887e0db173e48a95177805d87f386b08f71b2973abb3</originalsourceid><addsrcrecordid>eNp1UEtPwzAMjhBITGM_gFslzgU7aZvkhNB4Spt2YJyjtE1Yp60dSSq0f09KkTggfLGt7-FPJuQS4RqRZTevCFTKXEoUkANgcUImKCWkeUaz0zhHOB3wczLzfguxGJUZyAm5XbVJ2Jjk_tjqfVP5pLPf-1IH4xq9Sz6bsEnWTrfedm5v6mTZVK7zwfVV6J25IGdW77yZ_fQpeXt8WM-f08Xq6WV-t0grhkVIZQ2ZLnNRWRSUihiWm0oIbqAukTOTCS1z5DzmrwW3TBQlCMuxpJIzXZZsSq5G34PrPnrjg9p2vWvjSUWRFVLkRQGRhSNriOidsergmr12R4WghlepP6-KGjpqfOS278b9Ov8v-gJgEWjS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2136985660</pqid></control><display><type>article</type><title>On the Dynamics of the Material with Transformed Microstructure</title><source>SpringerLink Journals - AutoHoldings</source><creator>Morozov, N. F. ; Indeitsev, D. A. ; Semenov, B. N. ; Vakulenko, S. A. ; Skubov, D. Yu ; Lukin, A. V. ; Popov, I. A. ; Vavilov, D. S.</creator><creatorcontrib>Morozov, N. F. ; Indeitsev, D. A. ; Semenov, B. N. ; Vakulenko, S. A. ; Skubov, D. Yu ; Lukin, A. V. ; Popov, I. A. ; Vavilov, D. S.</creatorcontrib><description>Numerous experimental studies on shock wave loading of metals have shown by electron microscopy that the crystal structure of the material can undergo transformation in a certain impactor velocity range. At the macroscale, these changes are observed as energy losses associated with the formation of a new structure. The losses are manifested on the time-velocity profile of the rear target surface which contains key information about the material properties. In this paper, a two-component model of a material with a nonlinear internal interaction force is proposed for the description of structural transformations, taking into account the periodic structure of the material. Dynamic equations are written with respect to the motion of the center of mass of the components acting as a measured macroparameter, as well as with respect to their relative displacement serving as the internal degree of freedom responsible for structural transformations. The proposed model is applied to solve a quasi-static problem of the kinematic extension of a two-component rod in order to determine the parameters of a nonmonotonic stressstrain curve, which is often used in describing materials subjected to phase transformations. By solving a dynamic problem of nonstationary impact on the material by a short rectangular pulse, the effect of nonstationary wave damping is demonstrated which is associated with the wave energy dissipation in structural changes of the material. An analytical expression is obtained on the basis of a continuous-discrete analogy for estimating the duration of structural transformations and the parameter characterizing the internal interaction force between the components. The conclusions are confirmed by a numerical solution of a nonlinear Cauchy problem within the finite difference framework.</description><identifier>ISSN: 1029-9599</identifier><identifier>EISSN: 1990-5424</identifier><identifier>DOI: 10.1134/S1029959918050016</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Cauchy problems ; Classical Mechanics ; Crystal structure ; Damping ; Energy dissipation ; Finite difference method ; Interaction parameters ; Material properties ; Materials Science ; Mathematical models ; Order parameters ; Periodic structures ; Phase transitions ; Physics ; Physics and Astronomy ; Shock waves ; Solid State Physics ; Velocity distribution ; Wave power</subject><ispartof>Physical mesomechanics, 2018-09, Vol.21 (5), p.379-389</ispartof><rights>Pleiades Publishing, Ltd. 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-9d04ab58cf182289957ec887e0db173e48a95177805d87f386b08f71b2973abb3</citedby><cites>FETCH-LOGICAL-c316t-9d04ab58cf182289957ec887e0db173e48a95177805d87f386b08f71b2973abb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1029959918050016$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1029959918050016$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Morozov, N. F.</creatorcontrib><creatorcontrib>Indeitsev, D. A.</creatorcontrib><creatorcontrib>Semenov, B. N.</creatorcontrib><creatorcontrib>Vakulenko, S. A.</creatorcontrib><creatorcontrib>Skubov, D. Yu</creatorcontrib><creatorcontrib>Lukin, A. V.</creatorcontrib><creatorcontrib>Popov, I. A.</creatorcontrib><creatorcontrib>Vavilov, D. S.</creatorcontrib><title>On the Dynamics of the Material with Transformed Microstructure</title><title>Physical mesomechanics</title><addtitle>Phys Mesomech</addtitle><description>Numerous experimental studies on shock wave loading of metals have shown by electron microscopy that the crystal structure of the material can undergo transformation in a certain impactor velocity range. At the macroscale, these changes are observed as energy losses associated with the formation of a new structure. The losses are manifested on the time-velocity profile of the rear target surface which contains key information about the material properties. In this paper, a two-component model of a material with a nonlinear internal interaction force is proposed for the description of structural transformations, taking into account the periodic structure of the material. Dynamic equations are written with respect to the motion of the center of mass of the components acting as a measured macroparameter, as well as with respect to their relative displacement serving as the internal degree of freedom responsible for structural transformations. The proposed model is applied to solve a quasi-static problem of the kinematic extension of a two-component rod in order to determine the parameters of a nonmonotonic stressstrain curve, which is often used in describing materials subjected to phase transformations. By solving a dynamic problem of nonstationary impact on the material by a short rectangular pulse, the effect of nonstationary wave damping is demonstrated which is associated with the wave energy dissipation in structural changes of the material. An analytical expression is obtained on the basis of a continuous-discrete analogy for estimating the duration of structural transformations and the parameter characterizing the internal interaction force between the components. The conclusions are confirmed by a numerical solution of a nonlinear Cauchy problem within the finite difference framework.</description><subject>Cauchy problems</subject><subject>Classical Mechanics</subject><subject>Crystal structure</subject><subject>Damping</subject><subject>Energy dissipation</subject><subject>Finite difference method</subject><subject>Interaction parameters</subject><subject>Material properties</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Order parameters</subject><subject>Periodic structures</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Shock waves</subject><subject>Solid State Physics</subject><subject>Velocity distribution</subject><subject>Wave power</subject><issn>1029-9599</issn><issn>1990-5424</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1UEtPwzAMjhBITGM_gFslzgU7aZvkhNB4Spt2YJyjtE1Yp60dSSq0f09KkTggfLGt7-FPJuQS4RqRZTevCFTKXEoUkANgcUImKCWkeUaz0zhHOB3wczLzfguxGJUZyAm5XbVJ2Jjk_tjqfVP5pLPf-1IH4xq9Sz6bsEnWTrfedm5v6mTZVK7zwfVV6J25IGdW77yZ_fQpeXt8WM-f08Xq6WV-t0grhkVIZQ2ZLnNRWRSUihiWm0oIbqAukTOTCS1z5DzmrwW3TBQlCMuxpJIzXZZsSq5G34PrPnrjg9p2vWvjSUWRFVLkRQGRhSNriOidsergmr12R4WghlepP6-KGjpqfOS278b9Ov8v-gJgEWjS</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Morozov, N. F.</creator><creator>Indeitsev, D. A.</creator><creator>Semenov, B. N.</creator><creator>Vakulenko, S. A.</creator><creator>Skubov, D. Yu</creator><creator>Lukin, A. V.</creator><creator>Popov, I. A.</creator><creator>Vavilov, D. S.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180901</creationdate><title>On the Dynamics of the Material with Transformed Microstructure</title><author>Morozov, N. F. ; Indeitsev, D. A. ; Semenov, B. N. ; Vakulenko, S. A. ; Skubov, D. Yu ; Lukin, A. V. ; Popov, I. A. ; Vavilov, D. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-9d04ab58cf182289957ec887e0db173e48a95177805d87f386b08f71b2973abb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cauchy problems</topic><topic>Classical Mechanics</topic><topic>Crystal structure</topic><topic>Damping</topic><topic>Energy dissipation</topic><topic>Finite difference method</topic><topic>Interaction parameters</topic><topic>Material properties</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Order parameters</topic><topic>Periodic structures</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Shock waves</topic><topic>Solid State Physics</topic><topic>Velocity distribution</topic><topic>Wave power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morozov, N. F.</creatorcontrib><creatorcontrib>Indeitsev, D. A.</creatorcontrib><creatorcontrib>Semenov, B. N.</creatorcontrib><creatorcontrib>Vakulenko, S. A.</creatorcontrib><creatorcontrib>Skubov, D. Yu</creatorcontrib><creatorcontrib>Lukin, A. V.</creatorcontrib><creatorcontrib>Popov, I. A.</creatorcontrib><creatorcontrib>Vavilov, D. S.</creatorcontrib><collection>CrossRef</collection><jtitle>Physical mesomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morozov, N. F.</au><au>Indeitsev, D. A.</au><au>Semenov, B. N.</au><au>Vakulenko, S. A.</au><au>Skubov, D. Yu</au><au>Lukin, A. V.</au><au>Popov, I. A.</au><au>Vavilov, D. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Dynamics of the Material with Transformed Microstructure</atitle><jtitle>Physical mesomechanics</jtitle><stitle>Phys Mesomech</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>21</volume><issue>5</issue><spage>379</spage><epage>389</epage><pages>379-389</pages><issn>1029-9599</issn><eissn>1990-5424</eissn><abstract>Numerous experimental studies on shock wave loading of metals have shown by electron microscopy that the crystal structure of the material can undergo transformation in a certain impactor velocity range. At the macroscale, these changes are observed as energy losses associated with the formation of a new structure. The losses are manifested on the time-velocity profile of the rear target surface which contains key information about the material properties. In this paper, a two-component model of a material with a nonlinear internal interaction force is proposed for the description of structural transformations, taking into account the periodic structure of the material. Dynamic equations are written with respect to the motion of the center of mass of the components acting as a measured macroparameter, as well as with respect to their relative displacement serving as the internal degree of freedom responsible for structural transformations. The proposed model is applied to solve a quasi-static problem of the kinematic extension of a two-component rod in order to determine the parameters of a nonmonotonic stressstrain curve, which is often used in describing materials subjected to phase transformations. By solving a dynamic problem of nonstationary impact on the material by a short rectangular pulse, the effect of nonstationary wave damping is demonstrated which is associated with the wave energy dissipation in structural changes of the material. An analytical expression is obtained on the basis of a continuous-discrete analogy for estimating the duration of structural transformations and the parameter characterizing the internal interaction force between the components. The conclusions are confirmed by a numerical solution of a nonlinear Cauchy problem within the finite difference framework.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1029959918050016</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1029-9599
ispartof Physical mesomechanics, 2018-09, Vol.21 (5), p.379-389
issn 1029-9599
1990-5424
language eng
recordid cdi_proquest_journals_2136985660
source SpringerLink Journals - AutoHoldings
subjects Cauchy problems
Classical Mechanics
Crystal structure
Damping
Energy dissipation
Finite difference method
Interaction parameters
Material properties
Materials Science
Mathematical models
Order parameters
Periodic structures
Phase transitions
Physics
Physics and Astronomy
Shock waves
Solid State Physics
Velocity distribution
Wave power
title On the Dynamics of the Material with Transformed Microstructure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A54%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Dynamics%20of%20the%20Material%20with%20Transformed%20Microstructure&rft.jtitle=Physical%20mesomechanics&rft.au=Morozov,%20N.%20F.&rft.date=2018-09-01&rft.volume=21&rft.issue=5&rft.spage=379&rft.epage=389&rft.pages=379-389&rft.issn=1029-9599&rft.eissn=1990-5424&rft_id=info:doi/10.1134/S1029959918050016&rft_dat=%3Cproquest_cross%3E2136985660%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2136985660&rft_id=info:pmid/&rfr_iscdi=true