A Class of Three-Level Experimental Designs for Response Surface Modeling
Most empirically constructed response surface models are based on polynomials containing terms of order 2 or less. Experimental designs involving three equally spaced levels of each factor are popular choices for collecting data to tit such models. Because complete three-level factorial plans requir...
Gespeichert in:
Veröffentlicht in: | Technometrics 2000-05, Vol.42 (2), p.111-121 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 121 |
---|---|
container_issue | 2 |
container_start_page | 111 |
container_title | Technometrics |
container_volume | 42 |
creator | Morris, Max D. |
description | Most empirically constructed response surface models are based on polynomials containing terms of order 2 or less. Experimental designs involving three equally spaced levels of each factor are popular choices for collecting data to tit such models. Because complete three-level factorial plans require more experimental runs than can usually be accommodated in practice, smaller designs are typically used. The families of three-level designs most often used in this context are the Box-Behnken plans and various forms of the central composite designs. This article introduces a different method for constructing composite designs, motivated by notions of sequential experimentation and the minimax and maximin distance criteria used in spatial modeling. Operational and performance characteristics of some designs constructed by the method are compared to those of competing Box-Behnken and central composite plans. |
doi_str_mv | 10.1080/00401706.2000.10485990 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_213698146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1271443</jstor_id><sourcerecordid>1271443</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-6de3a9e9b23ca646c40f0b8b51a42a1a5ecf39cd7da6520f7da476bf366f6ec23</originalsourceid><addsrcrecordid>eNqFkNtKAzEQhoMoWKuvIEG8XZ0cNtm9LPUIFUHrdUizE92ybmqy9fD27lKL3nk1MHzzz8xHyDGDMwYFnANIYBrUGQcYWrLIyxJ2yIjlQmdcc7FLRgOUDdQ-OUhpCcAEL_SI3E7otLEp0eDp_CUiZjN8x4Zefq4w1q_YdrahF5jq5zZRHyJ9wLQKbUL6uI7eOqR3ocKmbp8PyZ63TcKjnzomT1eX8-lNNru_vp1OZpkTWneZqlDYEssFF84qqZwED4tikTMruWU2R-dF6SpdWZVz8H2VWi28UMordFyMyckmdxXD2xpTZ5ZhHdt-peFMqLJgUvWQ2kAuhpQierPqv7HxyzAwgzWztWYGa2ZrrR88_Um3ydnGR9u6Ov1O55wBFL_YMnUh_g3nArRhXDMpRY9NNljd9u5e7UeITWU6-9WEuI0W_1z0DWqZiyI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213698146</pqid></control><display><type>article</type><title>A Class of Three-Level Experimental Designs for Response Surface Modeling</title><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><creator>Morris, Max D.</creator><creatorcontrib>Morris, Max D.</creatorcontrib><description>Most empirically constructed response surface models are based on polynomials containing terms of order 2 or less. Experimental designs involving three equally spaced levels of each factor are popular choices for collecting data to tit such models. Because complete three-level factorial plans require more experimental runs than can usually be accommodated in practice, smaller designs are typically used. The families of three-level designs most often used in this context are the Box-Behnken plans and various forms of the central composite designs. This article introduces a different method for constructing composite designs, motivated by notions of sequential experimentation and the minimax and maximin distance criteria used in spatial modeling. Operational and performance characteristics of some designs constructed by the method are compared to those of competing Box-Behnken and central composite plans.</description><identifier>ISSN: 0040-1706</identifier><identifier>EISSN: 1537-2723</identifier><identifier>DOI: 10.1080/00401706.2000.10485990</identifier><identifier>CODEN: TCMTA2</identifier><language>eng</language><publisher>Alexandria, VI: Taylor & Francis Group</publisher><subject>Augmented pairs design ; Box-Behnken design ; Central composite design ; Design analysis ; Exact sciences and technology ; Experiment design ; Experimental design ; Experimentation ; Factorial design ; Factorials ; Mathematics ; Maximin distance criterion ; Minimax ; Minimax distance criterion ; Modeling ; Polynomials ; Probability and statistics ; Project design ; Response surface analysis ; Sciences and techniques of general use ; Sequential experiment ; Sequential methods ; Small composite design ; Standard error ; Statistics</subject><ispartof>Technometrics, 2000-05, Vol.42 (2), p.111-121</ispartof><rights>Copyright Taylor & Francis Group, LLC 2000</rights><rights>Copyright 2000 The American Statistical Association and the American Society for Quality</rights><rights>2000 INIST-CNRS</rights><rights>Copyright American Society for Quality May 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-6de3a9e9b23ca646c40f0b8b51a42a1a5ecf39cd7da6520f7da476bf366f6ec23</citedby><cites>FETCH-LOGICAL-c377t-6de3a9e9b23ca646c40f0b8b51a42a1a5ecf39cd7da6520f7da476bf366f6ec23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1271443$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1271443$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,829,27905,27906,57998,58002,58231,58235</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1521008$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Morris, Max D.</creatorcontrib><title>A Class of Three-Level Experimental Designs for Response Surface Modeling</title><title>Technometrics</title><description>Most empirically constructed response surface models are based on polynomials containing terms of order 2 or less. Experimental designs involving three equally spaced levels of each factor are popular choices for collecting data to tit such models. Because complete three-level factorial plans require more experimental runs than can usually be accommodated in practice, smaller designs are typically used. The families of three-level designs most often used in this context are the Box-Behnken plans and various forms of the central composite designs. This article introduces a different method for constructing composite designs, motivated by notions of sequential experimentation and the minimax and maximin distance criteria used in spatial modeling. Operational and performance characteristics of some designs constructed by the method are compared to those of competing Box-Behnken and central composite plans.</description><subject>Augmented pairs design</subject><subject>Box-Behnken design</subject><subject>Central composite design</subject><subject>Design analysis</subject><subject>Exact sciences and technology</subject><subject>Experiment design</subject><subject>Experimental design</subject><subject>Experimentation</subject><subject>Factorial design</subject><subject>Factorials</subject><subject>Mathematics</subject><subject>Maximin distance criterion</subject><subject>Minimax</subject><subject>Minimax distance criterion</subject><subject>Modeling</subject><subject>Polynomials</subject><subject>Probability and statistics</subject><subject>Project design</subject><subject>Response surface analysis</subject><subject>Sciences and techniques of general use</subject><subject>Sequential experiment</subject><subject>Sequential methods</subject><subject>Small composite design</subject><subject>Standard error</subject><subject>Statistics</subject><issn>0040-1706</issn><issn>1537-2723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkNtKAzEQhoMoWKuvIEG8XZ0cNtm9LPUIFUHrdUizE92ybmqy9fD27lKL3nk1MHzzz8xHyDGDMwYFnANIYBrUGQcYWrLIyxJ2yIjlQmdcc7FLRgOUDdQ-OUhpCcAEL_SI3E7otLEp0eDp_CUiZjN8x4Zefq4w1q_YdrahF5jq5zZRHyJ9wLQKbUL6uI7eOqR3ocKmbp8PyZ63TcKjnzomT1eX8-lNNru_vp1OZpkTWneZqlDYEssFF84qqZwED4tikTMruWU2R-dF6SpdWZVz8H2VWi28UMordFyMyckmdxXD2xpTZ5ZhHdt-peFMqLJgUvWQ2kAuhpQierPqv7HxyzAwgzWztWYGa2ZrrR88_Um3ydnGR9u6Ov1O55wBFL_YMnUh_g3nArRhXDMpRY9NNljd9u5e7UeITWU6-9WEuI0W_1z0DWqZiyI</recordid><startdate>20000501</startdate><enddate>20000501</enddate><creator>Morris, Max D.</creator><general>Taylor & Francis Group</general><general>The American Society for Quality and The American Statistical Association</general><general>American Society for Quality Control</general><general>American Statistical Association</general><general>American Society for Quality</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20000501</creationdate><title>A Class of Three-Level Experimental Designs for Response Surface Modeling</title><author>Morris, Max D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-6de3a9e9b23ca646c40f0b8b51a42a1a5ecf39cd7da6520f7da476bf366f6ec23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Augmented pairs design</topic><topic>Box-Behnken design</topic><topic>Central composite design</topic><topic>Design analysis</topic><topic>Exact sciences and technology</topic><topic>Experiment design</topic><topic>Experimental design</topic><topic>Experimentation</topic><topic>Factorial design</topic><topic>Factorials</topic><topic>Mathematics</topic><topic>Maximin distance criterion</topic><topic>Minimax</topic><topic>Minimax distance criterion</topic><topic>Modeling</topic><topic>Polynomials</topic><topic>Probability and statistics</topic><topic>Project design</topic><topic>Response surface analysis</topic><topic>Sciences and techniques of general use</topic><topic>Sequential experiment</topic><topic>Sequential methods</topic><topic>Small composite design</topic><topic>Standard error</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morris, Max D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Technometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morris, Max D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Class of Three-Level Experimental Designs for Response Surface Modeling</atitle><jtitle>Technometrics</jtitle><date>2000-05-01</date><risdate>2000</risdate><volume>42</volume><issue>2</issue><spage>111</spage><epage>121</epage><pages>111-121</pages><issn>0040-1706</issn><eissn>1537-2723</eissn><coden>TCMTA2</coden><abstract>Most empirically constructed response surface models are based on polynomials containing terms of order 2 or less. Experimental designs involving three equally spaced levels of each factor are popular choices for collecting data to tit such models. Because complete three-level factorial plans require more experimental runs than can usually be accommodated in practice, smaller designs are typically used. The families of three-level designs most often used in this context are the Box-Behnken plans and various forms of the central composite designs. This article introduces a different method for constructing composite designs, motivated by notions of sequential experimentation and the minimax and maximin distance criteria used in spatial modeling. Operational and performance characteristics of some designs constructed by the method are compared to those of competing Box-Behnken and central composite plans.</abstract><cop>Alexandria, VI</cop><cop>Milwaukee, WI</cop><pub>Taylor & Francis Group</pub><doi>10.1080/00401706.2000.10485990</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-1706 |
ispartof | Technometrics, 2000-05, Vol.42 (2), p.111-121 |
issn | 0040-1706 1537-2723 |
language | eng |
recordid | cdi_proquest_journals_213698146 |
source | JSTOR Mathematics & Statistics; Jstor Complete Legacy |
subjects | Augmented pairs design Box-Behnken design Central composite design Design analysis Exact sciences and technology Experiment design Experimental design Experimentation Factorial design Factorials Mathematics Maximin distance criterion Minimax Minimax distance criterion Modeling Polynomials Probability and statistics Project design Response surface analysis Sciences and techniques of general use Sequential experiment Sequential methods Small composite design Standard error Statistics |
title | A Class of Three-Level Experimental Designs for Response Surface Modeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A51%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Class%20of%20Three-Level%20Experimental%20Designs%20for%20Response%20Surface%20Modeling&rft.jtitle=Technometrics&rft.au=Morris,%20Max%20D.&rft.date=2000-05-01&rft.volume=42&rft.issue=2&rft.spage=111&rft.epage=121&rft.pages=111-121&rft.issn=0040-1706&rft.eissn=1537-2723&rft.coden=TCMTA2&rft_id=info:doi/10.1080/00401706.2000.10485990&rft_dat=%3Cjstor_proqu%3E1271443%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213698146&rft_id=info:pmid/&rft_jstor_id=1271443&rfr_iscdi=true |