A Class of Three-Level Experimental Designs for Response Surface Modeling

Most empirically constructed response surface models are based on polynomials containing terms of order 2 or less. Experimental designs involving three equally spaced levels of each factor are popular choices for collecting data to tit such models. Because complete three-level factorial plans requir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Technometrics 2000-05, Vol.42 (2), p.111-121
1. Verfasser: Morris, Max D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 121
container_issue 2
container_start_page 111
container_title Technometrics
container_volume 42
creator Morris, Max D.
description Most empirically constructed response surface models are based on polynomials containing terms of order 2 or less. Experimental designs involving three equally spaced levels of each factor are popular choices for collecting data to tit such models. Because complete three-level factorial plans require more experimental runs than can usually be accommodated in practice, smaller designs are typically used. The families of three-level designs most often used in this context are the Box-Behnken plans and various forms of the central composite designs. This article introduces a different method for constructing composite designs, motivated by notions of sequential experimentation and the minimax and maximin distance criteria used in spatial modeling. Operational and performance characteristics of some designs constructed by the method are compared to those of competing Box-Behnken and central composite plans.
doi_str_mv 10.1080/00401706.2000.10485990
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_213698146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1271443</jstor_id><sourcerecordid>1271443</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-6de3a9e9b23ca646c40f0b8b51a42a1a5ecf39cd7da6520f7da476bf366f6ec23</originalsourceid><addsrcrecordid>eNqFkNtKAzEQhoMoWKuvIEG8XZ0cNtm9LPUIFUHrdUizE92ybmqy9fD27lKL3nk1MHzzz8xHyDGDMwYFnANIYBrUGQcYWrLIyxJ2yIjlQmdcc7FLRgOUDdQ-OUhpCcAEL_SI3E7otLEp0eDp_CUiZjN8x4Zefq4w1q_YdrahF5jq5zZRHyJ9wLQKbUL6uI7eOqR3ocKmbp8PyZ63TcKjnzomT1eX8-lNNru_vp1OZpkTWneZqlDYEssFF84qqZwED4tikTMruWU2R-dF6SpdWZVz8H2VWi28UMordFyMyckmdxXD2xpTZ5ZhHdt-peFMqLJgUvWQ2kAuhpQierPqv7HxyzAwgzWztWYGa2ZrrR88_Um3ydnGR9u6Ov1O55wBFL_YMnUh_g3nArRhXDMpRY9NNljd9u5e7UeITWU6-9WEuI0W_1z0DWqZiyI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213698146</pqid></control><display><type>article</type><title>A Class of Three-Level Experimental Designs for Response Surface Modeling</title><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><creator>Morris, Max D.</creator><creatorcontrib>Morris, Max D.</creatorcontrib><description>Most empirically constructed response surface models are based on polynomials containing terms of order 2 or less. Experimental designs involving three equally spaced levels of each factor are popular choices for collecting data to tit such models. Because complete three-level factorial plans require more experimental runs than can usually be accommodated in practice, smaller designs are typically used. The families of three-level designs most often used in this context are the Box-Behnken plans and various forms of the central composite designs. This article introduces a different method for constructing composite designs, motivated by notions of sequential experimentation and the minimax and maximin distance criteria used in spatial modeling. Operational and performance characteristics of some designs constructed by the method are compared to those of competing Box-Behnken and central composite plans.</description><identifier>ISSN: 0040-1706</identifier><identifier>EISSN: 1537-2723</identifier><identifier>DOI: 10.1080/00401706.2000.10485990</identifier><identifier>CODEN: TCMTA2</identifier><language>eng</language><publisher>Alexandria, VI: Taylor &amp; Francis Group</publisher><subject>Augmented pairs design ; Box-Behnken design ; Central composite design ; Design analysis ; Exact sciences and technology ; Experiment design ; Experimental design ; Experimentation ; Factorial design ; Factorials ; Mathematics ; Maximin distance criterion ; Minimax ; Minimax distance criterion ; Modeling ; Polynomials ; Probability and statistics ; Project design ; Response surface analysis ; Sciences and techniques of general use ; Sequential experiment ; Sequential methods ; Small composite design ; Standard error ; Statistics</subject><ispartof>Technometrics, 2000-05, Vol.42 (2), p.111-121</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2000</rights><rights>Copyright 2000 The American Statistical Association and the American Society for Quality</rights><rights>2000 INIST-CNRS</rights><rights>Copyright American Society for Quality May 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-6de3a9e9b23ca646c40f0b8b51a42a1a5ecf39cd7da6520f7da476bf366f6ec23</citedby><cites>FETCH-LOGICAL-c377t-6de3a9e9b23ca646c40f0b8b51a42a1a5ecf39cd7da6520f7da476bf366f6ec23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1271443$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1271443$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,829,27905,27906,57998,58002,58231,58235</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1521008$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Morris, Max D.</creatorcontrib><title>A Class of Three-Level Experimental Designs for Response Surface Modeling</title><title>Technometrics</title><description>Most empirically constructed response surface models are based on polynomials containing terms of order 2 or less. Experimental designs involving three equally spaced levels of each factor are popular choices for collecting data to tit such models. Because complete three-level factorial plans require more experimental runs than can usually be accommodated in practice, smaller designs are typically used. The families of three-level designs most often used in this context are the Box-Behnken plans and various forms of the central composite designs. This article introduces a different method for constructing composite designs, motivated by notions of sequential experimentation and the minimax and maximin distance criteria used in spatial modeling. Operational and performance characteristics of some designs constructed by the method are compared to those of competing Box-Behnken and central composite plans.</description><subject>Augmented pairs design</subject><subject>Box-Behnken design</subject><subject>Central composite design</subject><subject>Design analysis</subject><subject>Exact sciences and technology</subject><subject>Experiment design</subject><subject>Experimental design</subject><subject>Experimentation</subject><subject>Factorial design</subject><subject>Factorials</subject><subject>Mathematics</subject><subject>Maximin distance criterion</subject><subject>Minimax</subject><subject>Minimax distance criterion</subject><subject>Modeling</subject><subject>Polynomials</subject><subject>Probability and statistics</subject><subject>Project design</subject><subject>Response surface analysis</subject><subject>Sciences and techniques of general use</subject><subject>Sequential experiment</subject><subject>Sequential methods</subject><subject>Small composite design</subject><subject>Standard error</subject><subject>Statistics</subject><issn>0040-1706</issn><issn>1537-2723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkNtKAzEQhoMoWKuvIEG8XZ0cNtm9LPUIFUHrdUizE92ybmqy9fD27lKL3nk1MHzzz8xHyDGDMwYFnANIYBrUGQcYWrLIyxJ2yIjlQmdcc7FLRgOUDdQ-OUhpCcAEL_SI3E7otLEp0eDp_CUiZjN8x4Zefq4w1q_YdrahF5jq5zZRHyJ9wLQKbUL6uI7eOqR3ocKmbp8PyZ63TcKjnzomT1eX8-lNNru_vp1OZpkTWneZqlDYEssFF84qqZwED4tikTMruWU2R-dF6SpdWZVz8H2VWi28UMordFyMyckmdxXD2xpTZ5ZhHdt-peFMqLJgUvWQ2kAuhpQierPqv7HxyzAwgzWztWYGa2ZrrR88_Um3ydnGR9u6Ov1O55wBFL_YMnUh_g3nArRhXDMpRY9NNljd9u5e7UeITWU6-9WEuI0W_1z0DWqZiyI</recordid><startdate>20000501</startdate><enddate>20000501</enddate><creator>Morris, Max D.</creator><general>Taylor &amp; Francis Group</general><general>The American Society for Quality and The American Statistical Association</general><general>American Society for Quality Control</general><general>American Statistical Association</general><general>American Society for Quality</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20000501</creationdate><title>A Class of Three-Level Experimental Designs for Response Surface Modeling</title><author>Morris, Max D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-6de3a9e9b23ca646c40f0b8b51a42a1a5ecf39cd7da6520f7da476bf366f6ec23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Augmented pairs design</topic><topic>Box-Behnken design</topic><topic>Central composite design</topic><topic>Design analysis</topic><topic>Exact sciences and technology</topic><topic>Experiment design</topic><topic>Experimental design</topic><topic>Experimentation</topic><topic>Factorial design</topic><topic>Factorials</topic><topic>Mathematics</topic><topic>Maximin distance criterion</topic><topic>Minimax</topic><topic>Minimax distance criterion</topic><topic>Modeling</topic><topic>Polynomials</topic><topic>Probability and statistics</topic><topic>Project design</topic><topic>Response surface analysis</topic><topic>Sciences and techniques of general use</topic><topic>Sequential experiment</topic><topic>Sequential methods</topic><topic>Small composite design</topic><topic>Standard error</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morris, Max D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Technometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morris, Max D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Class of Three-Level Experimental Designs for Response Surface Modeling</atitle><jtitle>Technometrics</jtitle><date>2000-05-01</date><risdate>2000</risdate><volume>42</volume><issue>2</issue><spage>111</spage><epage>121</epage><pages>111-121</pages><issn>0040-1706</issn><eissn>1537-2723</eissn><coden>TCMTA2</coden><abstract>Most empirically constructed response surface models are based on polynomials containing terms of order 2 or less. Experimental designs involving three equally spaced levels of each factor are popular choices for collecting data to tit such models. Because complete three-level factorial plans require more experimental runs than can usually be accommodated in practice, smaller designs are typically used. The families of three-level designs most often used in this context are the Box-Behnken plans and various forms of the central composite designs. This article introduces a different method for constructing composite designs, motivated by notions of sequential experimentation and the minimax and maximin distance criteria used in spatial modeling. Operational and performance characteristics of some designs constructed by the method are compared to those of competing Box-Behnken and central composite plans.</abstract><cop>Alexandria, VI</cop><cop>Milwaukee, WI</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/00401706.2000.10485990</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-1706
ispartof Technometrics, 2000-05, Vol.42 (2), p.111-121
issn 0040-1706
1537-2723
language eng
recordid cdi_proquest_journals_213698146
source JSTOR Mathematics & Statistics; Jstor Complete Legacy
subjects Augmented pairs design
Box-Behnken design
Central composite design
Design analysis
Exact sciences and technology
Experiment design
Experimental design
Experimentation
Factorial design
Factorials
Mathematics
Maximin distance criterion
Minimax
Minimax distance criterion
Modeling
Polynomials
Probability and statistics
Project design
Response surface analysis
Sciences and techniques of general use
Sequential experiment
Sequential methods
Small composite design
Standard error
Statistics
title A Class of Three-Level Experimental Designs for Response Surface Modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A51%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Class%20of%20Three-Level%20Experimental%20Designs%20for%20Response%20Surface%20Modeling&rft.jtitle=Technometrics&rft.au=Morris,%20Max%20D.&rft.date=2000-05-01&rft.volume=42&rft.issue=2&rft.spage=111&rft.epage=121&rft.pages=111-121&rft.issn=0040-1706&rft.eissn=1537-2723&rft.coden=TCMTA2&rft_id=info:doi/10.1080/00401706.2000.10485990&rft_dat=%3Cjstor_proqu%3E1271443%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213698146&rft_id=info:pmid/&rft_jstor_id=1271443&rfr_iscdi=true