The Effect of Time and Temperature of Nitridation-Oxidation Process on Properties and Corrosion Resistance of AISI 316L Steel
In this research, AISI 316L austenitic stainless steel has been subjected to plasma nitriding and oxidation- nitridation heat treatment at several temperatures for different times. Plasma nitriding of the samples was performed in N 2 /H 2 = 1/3 atmosphere at temperatures of 425, 450, and 475°C for 5...
Gespeichert in:
Veröffentlicht in: | Surface engineering and applied electrochemistry 2018-09, Vol.54 (5), p.508-517 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this research, AISI 316L austenitic stainless steel has been subjected to plasma nitriding and oxidation- nitridation heat treatment at several temperatures for different times. Plasma nitriding of the samples was performed in N
2
/H
2
= 1/3 atmosphere at temperatures of 425, 450, and 475°C for 5 h. To study the effects of the combined nitridation-oxidation process on mechanical and physical properties, the samples have been exposed in O
2
/H
2
= 1/5 oxidating atmosphere at 425, 450, and 500°C for 15, 30, and 60 min, respectively. The mechanical and physical properties of the samples were studied after nitridation-oxidation heat treatment. The microstructural properties were examined by optical microscopy and scanning electron microscopy; the phases were analyzed by X-ray diffraction. The wear behavior of the oxidized-nitrided samples was studied using pin-on-disk tribotesting. The hardness and depth of the nitrided layer were measured by a Vickers hardness tester. The corrosion resistance of both untreated and treated samples was tested by the Tafel polarization and potentiodynamic polarization in 3.5% NaCl solution at ambient temperature. The results indicate that the combined nitridation-oxidation heat treatment improves both the pitting corrosion and wear resistances of AISI 316L steel and further increases its hardness. |
---|---|
ISSN: | 1068-3755 1934-8002 |
DOI: | 10.3103/S1068375518050125 |