Lignin nanoparticles as nano-spacers for tuning the viscoelasticity of cellulose nanofibril reinforced polyvinyl alcohol-borax hydrogel

[Display omitted] •LNP can be mixed with CNF, PVA and borax to assemble self-healable hydrogel.•CNF acted as reinforcing agents to enhance the interaction between polymer matrix.•LNP acted as nano-spacers to impede aggregation between hydrophilic materials.•Tuning LNP content can be an effective way...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European polymer journal 2018-10, Vol.107, p.267-274
Hauptverfasser: Bian, Huiyang, Jiao, Liang, Wang, Ruibin, Wang, Xiu, Zhu, Wenyuan, Dai, Hongqi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 274
container_issue
container_start_page 267
container_title European polymer journal
container_volume 107
creator Bian, Huiyang
Jiao, Liang
Wang, Ruibin
Wang, Xiu
Zhu, Wenyuan
Dai, Hongqi
description [Display omitted] •LNP can be mixed with CNF, PVA and borax to assemble self-healable hydrogel.•CNF acted as reinforcing agents to enhance the interaction between polymer matrix.•LNP acted as nano-spacers to impede aggregation between hydrophilic materials.•Tuning LNP content can be an effective way to tailor the hydrogel property. To face the increasing demand of self-healing hydrogels with high performance for various applications ranging from bioscaffolds, culture matrices to responsive electronic devices, lignin nanoparticle-containing composite hydrogels are assembled via dynamic reversible didiol-borax linkages and linear polyvinyl alcohol (PVA) and cellulose nanofibrils (CNF). Lignin nanoparticles (LNP) acted as nano-spacers to fill the three-dimensional network, leading to enhanced viscoelasticity and thermal stability of hydrogel. With the increased LNP content, composite hydrogel exhibited the highest storage modulus and loss modulus of 8504 Pa and 3260 Pa, respectively, 28 times and 18 times greater than pure hydrogel without LNP. The resulting hydrogel showed porous network structure and excellent recovery behavior under continuous step strain. In general, this work demonstrates a facile approach to transfer nanoscale building blocks to 3D polymeric materials with tunable dynamic rheology properties and may provide a new prospect for the rational design of functional hydrogels for applications that require high rheological property.
doi_str_mv 10.1016/j.eurpolymj.2018.08.028
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2136899182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0014305718311297</els_id><sourcerecordid>2136899182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-f30f0d98888998c7a25e2c65d7b25de99f66da1092c682773660b622912b2b743</originalsourceid><addsrcrecordid>eNqFUE1LxDAQDaLguvobDHhuTdI2bY6L-AULXvQc0nS6m5JtatIu9hf4t83uileHBwPDe29mHkK3lKSUUH7fpTD5wdl516WM0ColEaw6QwtalVlCRV6cowUhNE8yUpSX6CqEjhBSZjxboO-12fSmx73q3aD8aLSFgFU4DpIwKA0-4NZ5PE6Rt8HjFvDeBO3AqhDpZpyxa7EGayfrAhyFram9sdiD6aNUQ4MPB-5NP1usrHZbZ5PaefWFt3Pj3QbsNbpolQ1w89uX6OPp8f3hJVm_Pb8-rNaJznM-Jm1GWtKIKpYQlS4VK4BpXjRlzYoGhGg5bxQlIg4rVsYfOak5Y4KymtVlni3R3cl38O5zgjDKzk2-jysloxmPrrRikVWeWNq7EDy0cvBmp_wsKZGH1GUn_1KXh9QliWBVVK5OSohP7A14GbSBPkZgPOhRNs786_EDiAeTUw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2136899182</pqid></control><display><type>article</type><title>Lignin nanoparticles as nano-spacers for tuning the viscoelasticity of cellulose nanofibril reinforced polyvinyl alcohol-borax hydrogel</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Bian, Huiyang ; Jiao, Liang ; Wang, Ruibin ; Wang, Xiu ; Zhu, Wenyuan ; Dai, Hongqi</creator><creatorcontrib>Bian, Huiyang ; Jiao, Liang ; Wang, Ruibin ; Wang, Xiu ; Zhu, Wenyuan ; Dai, Hongqi</creatorcontrib><description>[Display omitted] •LNP can be mixed with CNF, PVA and borax to assemble self-healable hydrogel.•CNF acted as reinforcing agents to enhance the interaction between polymer matrix.•LNP acted as nano-spacers to impede aggregation between hydrophilic materials.•Tuning LNP content can be an effective way to tailor the hydrogel property. To face the increasing demand of self-healing hydrogels with high performance for various applications ranging from bioscaffolds, culture matrices to responsive electronic devices, lignin nanoparticle-containing composite hydrogels are assembled via dynamic reversible didiol-borax linkages and linear polyvinyl alcohol (PVA) and cellulose nanofibrils (CNF). Lignin nanoparticles (LNP) acted as nano-spacers to fill the three-dimensional network, leading to enhanced viscoelasticity and thermal stability of hydrogel. With the increased LNP content, composite hydrogel exhibited the highest storage modulus and loss modulus of 8504 Pa and 3260 Pa, respectively, 28 times and 18 times greater than pure hydrogel without LNP. The resulting hydrogel showed porous network structure and excellent recovery behavior under continuous step strain. In general, this work demonstrates a facile approach to transfer nanoscale building blocks to 3D polymeric materials with tunable dynamic rheology properties and may provide a new prospect for the rational design of functional hydrogels for applications that require high rheological property.</description><identifier>ISSN: 0014-3057</identifier><identifier>EISSN: 1873-1945</identifier><identifier>DOI: 10.1016/j.eurpolymj.2018.08.028</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Borax ; Cellulose ; Cellulose fibers ; Cellulose nanofibrils ; Dimensional stability ; Electronic devices ; Hydrogel ; Hydrogels ; Lignin nanoparticles ; Loss modulus ; Nanocomposites ; Nanoparticles ; Polyvinyl alcohol ; Rheological properties ; Rheological property ; Rheology ; Self-recovery ; Spacers ; Storage modulus ; Thermal stability ; Viscoelasticity</subject><ispartof>European polymer journal, 2018-10, Vol.107, p.267-274</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-f30f0d98888998c7a25e2c65d7b25de99f66da1092c682773660b622912b2b743</citedby><cites>FETCH-LOGICAL-c446t-f30f0d98888998c7a25e2c65d7b25de99f66da1092c682773660b622912b2b743</cites><orcidid>0000-0002-2470-7508</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.eurpolymj.2018.08.028$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Bian, Huiyang</creatorcontrib><creatorcontrib>Jiao, Liang</creatorcontrib><creatorcontrib>Wang, Ruibin</creatorcontrib><creatorcontrib>Wang, Xiu</creatorcontrib><creatorcontrib>Zhu, Wenyuan</creatorcontrib><creatorcontrib>Dai, Hongqi</creatorcontrib><title>Lignin nanoparticles as nano-spacers for tuning the viscoelasticity of cellulose nanofibril reinforced polyvinyl alcohol-borax hydrogel</title><title>European polymer journal</title><description>[Display omitted] •LNP can be mixed with CNF, PVA and borax to assemble self-healable hydrogel.•CNF acted as reinforcing agents to enhance the interaction between polymer matrix.•LNP acted as nano-spacers to impede aggregation between hydrophilic materials.•Tuning LNP content can be an effective way to tailor the hydrogel property. To face the increasing demand of self-healing hydrogels with high performance for various applications ranging from bioscaffolds, culture matrices to responsive electronic devices, lignin nanoparticle-containing composite hydrogels are assembled via dynamic reversible didiol-borax linkages and linear polyvinyl alcohol (PVA) and cellulose nanofibrils (CNF). Lignin nanoparticles (LNP) acted as nano-spacers to fill the three-dimensional network, leading to enhanced viscoelasticity and thermal stability of hydrogel. With the increased LNP content, composite hydrogel exhibited the highest storage modulus and loss modulus of 8504 Pa and 3260 Pa, respectively, 28 times and 18 times greater than pure hydrogel without LNP. The resulting hydrogel showed porous network structure and excellent recovery behavior under continuous step strain. In general, this work demonstrates a facile approach to transfer nanoscale building blocks to 3D polymeric materials with tunable dynamic rheology properties and may provide a new prospect for the rational design of functional hydrogels for applications that require high rheological property.</description><subject>Borax</subject><subject>Cellulose</subject><subject>Cellulose fibers</subject><subject>Cellulose nanofibrils</subject><subject>Dimensional stability</subject><subject>Electronic devices</subject><subject>Hydrogel</subject><subject>Hydrogels</subject><subject>Lignin nanoparticles</subject><subject>Loss modulus</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Polyvinyl alcohol</subject><subject>Rheological properties</subject><subject>Rheological property</subject><subject>Rheology</subject><subject>Self-recovery</subject><subject>Spacers</subject><subject>Storage modulus</subject><subject>Thermal stability</subject><subject>Viscoelasticity</subject><issn>0014-3057</issn><issn>1873-1945</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LxDAQDaLguvobDHhuTdI2bY6L-AULXvQc0nS6m5JtatIu9hf4t83uileHBwPDe29mHkK3lKSUUH7fpTD5wdl516WM0ColEaw6QwtalVlCRV6cowUhNE8yUpSX6CqEjhBSZjxboO-12fSmx73q3aD8aLSFgFU4DpIwKA0-4NZ5PE6Rt8HjFvDeBO3AqhDpZpyxa7EGayfrAhyFram9sdiD6aNUQ4MPB-5NP1usrHZbZ5PaefWFt3Pj3QbsNbpolQ1w89uX6OPp8f3hJVm_Pb8-rNaJznM-Jm1GWtKIKpYQlS4VK4BpXjRlzYoGhGg5bxQlIg4rVsYfOak5Y4KymtVlni3R3cl38O5zgjDKzk2-jysloxmPrrRikVWeWNq7EDy0cvBmp_wsKZGH1GUn_1KXh9QliWBVVK5OSohP7A14GbSBPkZgPOhRNs786_EDiAeTUw</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Bian, Huiyang</creator><creator>Jiao, Liang</creator><creator>Wang, Ruibin</creator><creator>Wang, Xiu</creator><creator>Zhu, Wenyuan</creator><creator>Dai, Hongqi</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-2470-7508</orcidid></search><sort><creationdate>20181001</creationdate><title>Lignin nanoparticles as nano-spacers for tuning the viscoelasticity of cellulose nanofibril reinforced polyvinyl alcohol-borax hydrogel</title><author>Bian, Huiyang ; Jiao, Liang ; Wang, Ruibin ; Wang, Xiu ; Zhu, Wenyuan ; Dai, Hongqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-f30f0d98888998c7a25e2c65d7b25de99f66da1092c682773660b622912b2b743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Borax</topic><topic>Cellulose</topic><topic>Cellulose fibers</topic><topic>Cellulose nanofibrils</topic><topic>Dimensional stability</topic><topic>Electronic devices</topic><topic>Hydrogel</topic><topic>Hydrogels</topic><topic>Lignin nanoparticles</topic><topic>Loss modulus</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Polyvinyl alcohol</topic><topic>Rheological properties</topic><topic>Rheological property</topic><topic>Rheology</topic><topic>Self-recovery</topic><topic>Spacers</topic><topic>Storage modulus</topic><topic>Thermal stability</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bian, Huiyang</creatorcontrib><creatorcontrib>Jiao, Liang</creatorcontrib><creatorcontrib>Wang, Ruibin</creatorcontrib><creatorcontrib>Wang, Xiu</creatorcontrib><creatorcontrib>Zhu, Wenyuan</creatorcontrib><creatorcontrib>Dai, Hongqi</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>European polymer journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bian, Huiyang</au><au>Jiao, Liang</au><au>Wang, Ruibin</au><au>Wang, Xiu</au><au>Zhu, Wenyuan</au><au>Dai, Hongqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lignin nanoparticles as nano-spacers for tuning the viscoelasticity of cellulose nanofibril reinforced polyvinyl alcohol-borax hydrogel</atitle><jtitle>European polymer journal</jtitle><date>2018-10-01</date><risdate>2018</risdate><volume>107</volume><spage>267</spage><epage>274</epage><pages>267-274</pages><issn>0014-3057</issn><eissn>1873-1945</eissn><abstract>[Display omitted] •LNP can be mixed with CNF, PVA and borax to assemble self-healable hydrogel.•CNF acted as reinforcing agents to enhance the interaction between polymer matrix.•LNP acted as nano-spacers to impede aggregation between hydrophilic materials.•Tuning LNP content can be an effective way to tailor the hydrogel property. To face the increasing demand of self-healing hydrogels with high performance for various applications ranging from bioscaffolds, culture matrices to responsive electronic devices, lignin nanoparticle-containing composite hydrogels are assembled via dynamic reversible didiol-borax linkages and linear polyvinyl alcohol (PVA) and cellulose nanofibrils (CNF). Lignin nanoparticles (LNP) acted as nano-spacers to fill the three-dimensional network, leading to enhanced viscoelasticity and thermal stability of hydrogel. With the increased LNP content, composite hydrogel exhibited the highest storage modulus and loss modulus of 8504 Pa and 3260 Pa, respectively, 28 times and 18 times greater than pure hydrogel without LNP. The resulting hydrogel showed porous network structure and excellent recovery behavior under continuous step strain. In general, this work demonstrates a facile approach to transfer nanoscale building blocks to 3D polymeric materials with tunable dynamic rheology properties and may provide a new prospect for the rational design of functional hydrogels for applications that require high rheological property.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.eurpolymj.2018.08.028</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2470-7508</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0014-3057
ispartof European polymer journal, 2018-10, Vol.107, p.267-274
issn 0014-3057
1873-1945
language eng
recordid cdi_proquest_journals_2136899182
source ScienceDirect Journals (5 years ago - present)
subjects Borax
Cellulose
Cellulose fibers
Cellulose nanofibrils
Dimensional stability
Electronic devices
Hydrogel
Hydrogels
Lignin nanoparticles
Loss modulus
Nanocomposites
Nanoparticles
Polyvinyl alcohol
Rheological properties
Rheological property
Rheology
Self-recovery
Spacers
Storage modulus
Thermal stability
Viscoelasticity
title Lignin nanoparticles as nano-spacers for tuning the viscoelasticity of cellulose nanofibril reinforced polyvinyl alcohol-borax hydrogel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T11%3A30%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lignin%20nanoparticles%20as%20nano-spacers%20for%20tuning%20the%20viscoelasticity%20of%20cellulose%20nanofibril%20reinforced%20polyvinyl%20alcohol-borax%20hydrogel&rft.jtitle=European%20polymer%20journal&rft.au=Bian,%20Huiyang&rft.date=2018-10-01&rft.volume=107&rft.spage=267&rft.epage=274&rft.pages=267-274&rft.issn=0014-3057&rft.eissn=1873-1945&rft_id=info:doi/10.1016/j.eurpolymj.2018.08.028&rft_dat=%3Cproquest_cross%3E2136899182%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2136899182&rft_id=info:pmid/&rft_els_id=S0014305718311297&rfr_iscdi=true