On the Rate of Convergence of the Connectivity Threshold of Random Geometric Graphs with Skew Generalized Cantor Distributed Vertices

In this paper, we study the rate of convergence of the connectivity threshold of random geometric graphs when the underlying distribution of the vertices has no density. We consider n i.i.d. skew generalized Cantor distributed points on [0, 1] and we study the connectivity threshold of a random geom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Iranian journal of science and technology. Transaction A, Science Science, 2018-12, Vol.42 (4), p.2183-2187
1. Verfasser: Sajadi, Farkhondeh Alsadat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2187
container_issue 4
container_start_page 2183
container_title Iranian journal of science and technology. Transaction A, Science
container_volume 42
creator Sajadi, Farkhondeh Alsadat
description In this paper, we study the rate of convergence of the connectivity threshold of random geometric graphs when the underlying distribution of the vertices has no density. We consider n i.i.d. skew generalized Cantor distributed points on [0, 1] and we study the connectivity threshold of a random geometric graph that is built on these points. We show that for this graph, the connectivity threshold converges almost surely to a constant, similar result as in case of symmetric generalized Cantor distributed. We also study the rate of the convergence of this threshold in terms of the L 1 norm.
doi_str_mv 10.1007/s40995-017-0371-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2136866453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2136866453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-223506860d7e804ddd8466b4216a8c09d91baae8321d83986eb951a6259766893</originalsourceid><addsrcrecordid>eNp1kEFrGzEQhUVJoCb1D-hN0PMmGmlXKx2LmziBQCB1ehXa1Tir1pZcSU5I7_nfketCTj0NM-97b-AR8hnYOTDWX-SWad01DPqGiR4a-EBmXMi2AQX6hMyAcdVI3suPZJ6zH5gAkD1v5Yy83gVaJqT3tiCNa7qI4QnTI4bx73qQ6ingWPyTLy90NSXMU9y4g3pvg4tbusS4xZL8SJfJ7qZMn32Z6Pdf-FylgMlu_B90dGFDiYl-87myw77U0w9MxY-YP5HTtd1knP-bZ-Th6nK1uG5u75Y3i6-3zcilKg3nomNSSeZ6VKx1zqlWyqHlIK0amXYaBmtRCQ5OCa0kDroDK3mneymVFmfkyzF3l-LvPeZifsZ9CvWl4SBqsmw7USk4UmOKOSdcm13yW5teDDBzKNwcCze1cHMo3ED18KMnVzY8YnpP_r_pDXp-gzI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2136866453</pqid></control><display><type>article</type><title>On the Rate of Convergence of the Connectivity Threshold of Random Geometric Graphs with Skew Generalized Cantor Distributed Vertices</title><source>Alma/SFX Local Collection</source><creator>Sajadi, Farkhondeh Alsadat</creator><creatorcontrib>Sajadi, Farkhondeh Alsadat</creatorcontrib><description>In this paper, we study the rate of convergence of the connectivity threshold of random geometric graphs when the underlying distribution of the vertices has no density. We consider n i.i.d. skew generalized Cantor distributed points on [0, 1] and we study the connectivity threshold of a random geometric graph that is built on these points. We show that for this graph, the connectivity threshold converges almost surely to a constant, similar result as in case of symmetric generalized Cantor distributed. We also study the rate of the convergence of this threshold in terms of the L 1 norm.</description><identifier>ISSN: 1028-6276</identifier><identifier>EISSN: 2364-1819</identifier><identifier>DOI: 10.1007/s40995-017-0371-1</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Apexes ; Chemistry/Food Science ; Connectivity ; Convergence ; Earth Sciences ; Engineering ; Graphs ; Life Sciences ; Materials Science ; Physics ; Research Paper</subject><ispartof>Iranian journal of science and technology. Transaction A, Science, 2018-12, Vol.42 (4), p.2183-2187</ispartof><rights>Shiraz University 2017</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-223506860d7e804ddd8466b4216a8c09d91baae8321d83986eb951a6259766893</cites><orcidid>0000-0001-9692-0941</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Sajadi, Farkhondeh Alsadat</creatorcontrib><title>On the Rate of Convergence of the Connectivity Threshold of Random Geometric Graphs with Skew Generalized Cantor Distributed Vertices</title><title>Iranian journal of science and technology. Transaction A, Science</title><addtitle>Iran J Sci Technol Trans Sci</addtitle><description>In this paper, we study the rate of convergence of the connectivity threshold of random geometric graphs when the underlying distribution of the vertices has no density. We consider n i.i.d. skew generalized Cantor distributed points on [0, 1] and we study the connectivity threshold of a random geometric graph that is built on these points. We show that for this graph, the connectivity threshold converges almost surely to a constant, similar result as in case of symmetric generalized Cantor distributed. We also study the rate of the convergence of this threshold in terms of the L 1 norm.</description><subject>Apexes</subject><subject>Chemistry/Food Science</subject><subject>Connectivity</subject><subject>Convergence</subject><subject>Earth Sciences</subject><subject>Engineering</subject><subject>Graphs</subject><subject>Life Sciences</subject><subject>Materials Science</subject><subject>Physics</subject><subject>Research Paper</subject><issn>1028-6276</issn><issn>2364-1819</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kEFrGzEQhUVJoCb1D-hN0PMmGmlXKx2LmziBQCB1ehXa1Tir1pZcSU5I7_nfketCTj0NM-97b-AR8hnYOTDWX-SWad01DPqGiR4a-EBmXMi2AQX6hMyAcdVI3suPZJ6zH5gAkD1v5Yy83gVaJqT3tiCNa7qI4QnTI4bx73qQ6ingWPyTLy90NSXMU9y4g3pvg4tbusS4xZL8SJfJ7qZMn32Z6Pdf-FylgMlu_B90dGFDiYl-87myw77U0w9MxY-YP5HTtd1knP-bZ-Th6nK1uG5u75Y3i6-3zcilKg3nomNSSeZ6VKx1zqlWyqHlIK0amXYaBmtRCQ5OCa0kDroDK3mneymVFmfkyzF3l-LvPeZifsZ9CvWl4SBqsmw7USk4UmOKOSdcm13yW5teDDBzKNwcCze1cHMo3ED18KMnVzY8YnpP_r_pDXp-gzI</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Sajadi, Farkhondeh Alsadat</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>7WY</scope><scope>7XB</scope><scope>883</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0F</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-9692-0941</orcidid></search><sort><creationdate>20181201</creationdate><title>On the Rate of Convergence of the Connectivity Threshold of Random Geometric Graphs with Skew Generalized Cantor Distributed Vertices</title><author>Sajadi, Farkhondeh Alsadat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-223506860d7e804ddd8466b4216a8c09d91baae8321d83986eb951a6259766893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Apexes</topic><topic>Chemistry/Food Science</topic><topic>Connectivity</topic><topic>Convergence</topic><topic>Earth Sciences</topic><topic>Engineering</topic><topic>Graphs</topic><topic>Life Sciences</topic><topic>Materials Science</topic><topic>Physics</topic><topic>Research Paper</topic><toplevel>online_resources</toplevel><creatorcontrib>Sajadi, Farkhondeh Alsadat</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Trade &amp; Industry (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Trade &amp; Industry</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Iranian journal of science and technology. Transaction A, Science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sajadi, Farkhondeh Alsadat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Rate of Convergence of the Connectivity Threshold of Random Geometric Graphs with Skew Generalized Cantor Distributed Vertices</atitle><jtitle>Iranian journal of science and technology. Transaction A, Science</jtitle><stitle>Iran J Sci Technol Trans Sci</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>42</volume><issue>4</issue><spage>2183</spage><epage>2187</epage><pages>2183-2187</pages><issn>1028-6276</issn><eissn>2364-1819</eissn><abstract>In this paper, we study the rate of convergence of the connectivity threshold of random geometric graphs when the underlying distribution of the vertices has no density. We consider n i.i.d. skew generalized Cantor distributed points on [0, 1] and we study the connectivity threshold of a random geometric graph that is built on these points. We show that for this graph, the connectivity threshold converges almost surely to a constant, similar result as in case of symmetric generalized Cantor distributed. We also study the rate of the convergence of this threshold in terms of the L 1 norm.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40995-017-0371-1</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-9692-0941</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1028-6276
ispartof Iranian journal of science and technology. Transaction A, Science, 2018-12, Vol.42 (4), p.2183-2187
issn 1028-6276
2364-1819
language eng
recordid cdi_proquest_journals_2136866453
source Alma/SFX Local Collection
subjects Apexes
Chemistry/Food Science
Connectivity
Convergence
Earth Sciences
Engineering
Graphs
Life Sciences
Materials Science
Physics
Research Paper
title On the Rate of Convergence of the Connectivity Threshold of Random Geometric Graphs with Skew Generalized Cantor Distributed Vertices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T03%3A01%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Rate%20of%20Convergence%20of%20the%20Connectivity%20Threshold%20of%20Random%20Geometric%20Graphs%20with%20Skew%20Generalized%20Cantor%20Distributed%20Vertices&rft.jtitle=Iranian%20journal%20of%20science%20and%20technology.%20Transaction%20A,%20Science&rft.au=Sajadi,%20Farkhondeh%20Alsadat&rft.date=2018-12-01&rft.volume=42&rft.issue=4&rft.spage=2183&rft.epage=2187&rft.pages=2183-2187&rft.issn=1028-6276&rft.eissn=2364-1819&rft_id=info:doi/10.1007/s40995-017-0371-1&rft_dat=%3Cproquest_cross%3E2136866453%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2136866453&rft_id=info:pmid/&rfr_iscdi=true