On the Rate of Convergence of the Connectivity Threshold of Random Geometric Graphs with Skew Generalized Cantor Distributed Vertices
In this paper, we study the rate of convergence of the connectivity threshold of random geometric graphs when the underlying distribution of the vertices has no density. We consider n i.i.d. skew generalized Cantor distributed points on [0, 1] and we study the connectivity threshold of a random geom...
Gespeichert in:
Veröffentlicht in: | Iranian journal of science and technology. Transaction A, Science Science, 2018-12, Vol.42 (4), p.2183-2187 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2187 |
---|---|
container_issue | 4 |
container_start_page | 2183 |
container_title | Iranian journal of science and technology. Transaction A, Science |
container_volume | 42 |
creator | Sajadi, Farkhondeh Alsadat |
description | In this paper, we study the rate of convergence of the connectivity threshold of random geometric graphs when the underlying distribution of the vertices has no density. We consider
n
i.i.d.
skew
generalized Cantor distributed points on [0, 1] and we study the connectivity threshold of a random geometric graph that is built on these points. We show that for this graph, the connectivity threshold converges almost surely to a constant, similar result as in case of
symmetric
generalized Cantor distributed. We also study the rate of the convergence of this threshold in terms of the
L
1
norm. |
doi_str_mv | 10.1007/s40995-017-0371-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2136866453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2136866453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-223506860d7e804ddd8466b4216a8c09d91baae8321d83986eb951a6259766893</originalsourceid><addsrcrecordid>eNp1kEFrGzEQhUVJoCb1D-hN0PMmGmlXKx2LmziBQCB1ehXa1Tir1pZcSU5I7_nfketCTj0NM-97b-AR8hnYOTDWX-SWad01DPqGiR4a-EBmXMi2AQX6hMyAcdVI3suPZJ6zH5gAkD1v5Yy83gVaJqT3tiCNa7qI4QnTI4bx73qQ6ingWPyTLy90NSXMU9y4g3pvg4tbusS4xZL8SJfJ7qZMn32Z6Pdf-FylgMlu_B90dGFDiYl-87myw77U0w9MxY-YP5HTtd1knP-bZ-Th6nK1uG5u75Y3i6-3zcilKg3nomNSSeZ6VKx1zqlWyqHlIK0amXYaBmtRCQ5OCa0kDroDK3mneymVFmfkyzF3l-LvPeZifsZ9CvWl4SBqsmw7USk4UmOKOSdcm13yW5teDDBzKNwcCze1cHMo3ED18KMnVzY8YnpP_r_pDXp-gzI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2136866453</pqid></control><display><type>article</type><title>On the Rate of Convergence of the Connectivity Threshold of Random Geometric Graphs with Skew Generalized Cantor Distributed Vertices</title><source>Alma/SFX Local Collection</source><creator>Sajadi, Farkhondeh Alsadat</creator><creatorcontrib>Sajadi, Farkhondeh Alsadat</creatorcontrib><description>In this paper, we study the rate of convergence of the connectivity threshold of random geometric graphs when the underlying distribution of the vertices has no density. We consider
n
i.i.d.
skew
generalized Cantor distributed points on [0, 1] and we study the connectivity threshold of a random geometric graph that is built on these points. We show that for this graph, the connectivity threshold converges almost surely to a constant, similar result as in case of
symmetric
generalized Cantor distributed. We also study the rate of the convergence of this threshold in terms of the
L
1
norm.</description><identifier>ISSN: 1028-6276</identifier><identifier>EISSN: 2364-1819</identifier><identifier>DOI: 10.1007/s40995-017-0371-1</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Apexes ; Chemistry/Food Science ; Connectivity ; Convergence ; Earth Sciences ; Engineering ; Graphs ; Life Sciences ; Materials Science ; Physics ; Research Paper</subject><ispartof>Iranian journal of science and technology. Transaction A, Science, 2018-12, Vol.42 (4), p.2183-2187</ispartof><rights>Shiraz University 2017</rights><rights>Copyright Springer Science & Business Media 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-223506860d7e804ddd8466b4216a8c09d91baae8321d83986eb951a6259766893</cites><orcidid>0000-0001-9692-0941</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Sajadi, Farkhondeh Alsadat</creatorcontrib><title>On the Rate of Convergence of the Connectivity Threshold of Random Geometric Graphs with Skew Generalized Cantor Distributed Vertices</title><title>Iranian journal of science and technology. Transaction A, Science</title><addtitle>Iran J Sci Technol Trans Sci</addtitle><description>In this paper, we study the rate of convergence of the connectivity threshold of random geometric graphs when the underlying distribution of the vertices has no density. We consider
n
i.i.d.
skew
generalized Cantor distributed points on [0, 1] and we study the connectivity threshold of a random geometric graph that is built on these points. We show that for this graph, the connectivity threshold converges almost surely to a constant, similar result as in case of
symmetric
generalized Cantor distributed. We also study the rate of the convergence of this threshold in terms of the
L
1
norm.</description><subject>Apexes</subject><subject>Chemistry/Food Science</subject><subject>Connectivity</subject><subject>Convergence</subject><subject>Earth Sciences</subject><subject>Engineering</subject><subject>Graphs</subject><subject>Life Sciences</subject><subject>Materials Science</subject><subject>Physics</subject><subject>Research Paper</subject><issn>1028-6276</issn><issn>2364-1819</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kEFrGzEQhUVJoCb1D-hN0PMmGmlXKx2LmziBQCB1ehXa1Tir1pZcSU5I7_nfketCTj0NM-97b-AR8hnYOTDWX-SWad01DPqGiR4a-EBmXMi2AQX6hMyAcdVI3suPZJ6zH5gAkD1v5Yy83gVaJqT3tiCNa7qI4QnTI4bx73qQ6ingWPyTLy90NSXMU9y4g3pvg4tbusS4xZL8SJfJ7qZMn32Z6Pdf-FylgMlu_B90dGFDiYl-87myw77U0w9MxY-YP5HTtd1knP-bZ-Th6nK1uG5u75Y3i6-3zcilKg3nomNSSeZ6VKx1zqlWyqHlIK0amXYaBmtRCQ5OCa0kDroDK3mneymVFmfkyzF3l-LvPeZifsZ9CvWl4SBqsmw7USk4UmOKOSdcm13yW5teDDBzKNwcCze1cHMo3ED18KMnVzY8YnpP_r_pDXp-gzI</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Sajadi, Farkhondeh Alsadat</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>7WY</scope><scope>7XB</scope><scope>883</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0F</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-9692-0941</orcidid></search><sort><creationdate>20181201</creationdate><title>On the Rate of Convergence of the Connectivity Threshold of Random Geometric Graphs with Skew Generalized Cantor Distributed Vertices</title><author>Sajadi, Farkhondeh Alsadat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-223506860d7e804ddd8466b4216a8c09d91baae8321d83986eb951a6259766893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Apexes</topic><topic>Chemistry/Food Science</topic><topic>Connectivity</topic><topic>Convergence</topic><topic>Earth Sciences</topic><topic>Engineering</topic><topic>Graphs</topic><topic>Life Sciences</topic><topic>Materials Science</topic><topic>Physics</topic><topic>Research Paper</topic><toplevel>online_resources</toplevel><creatorcontrib>Sajadi, Farkhondeh Alsadat</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Trade & Industry (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Trade & Industry</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Iranian journal of science and technology. Transaction A, Science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sajadi, Farkhondeh Alsadat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Rate of Convergence of the Connectivity Threshold of Random Geometric Graphs with Skew Generalized Cantor Distributed Vertices</atitle><jtitle>Iranian journal of science and technology. Transaction A, Science</jtitle><stitle>Iran J Sci Technol Trans Sci</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>42</volume><issue>4</issue><spage>2183</spage><epage>2187</epage><pages>2183-2187</pages><issn>1028-6276</issn><eissn>2364-1819</eissn><abstract>In this paper, we study the rate of convergence of the connectivity threshold of random geometric graphs when the underlying distribution of the vertices has no density. We consider
n
i.i.d.
skew
generalized Cantor distributed points on [0, 1] and we study the connectivity threshold of a random geometric graph that is built on these points. We show that for this graph, the connectivity threshold converges almost surely to a constant, similar result as in case of
symmetric
generalized Cantor distributed. We also study the rate of the convergence of this threshold in terms of the
L
1
norm.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40995-017-0371-1</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-9692-0941</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1028-6276 |
ispartof | Iranian journal of science and technology. Transaction A, Science, 2018-12, Vol.42 (4), p.2183-2187 |
issn | 1028-6276 2364-1819 |
language | eng |
recordid | cdi_proquest_journals_2136866453 |
source | Alma/SFX Local Collection |
subjects | Apexes Chemistry/Food Science Connectivity Convergence Earth Sciences Engineering Graphs Life Sciences Materials Science Physics Research Paper |
title | On the Rate of Convergence of the Connectivity Threshold of Random Geometric Graphs with Skew Generalized Cantor Distributed Vertices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T03%3A01%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Rate%20of%20Convergence%20of%20the%20Connectivity%20Threshold%20of%20Random%20Geometric%20Graphs%20with%20Skew%20Generalized%20Cantor%20Distributed%20Vertices&rft.jtitle=Iranian%20journal%20of%20science%20and%20technology.%20Transaction%20A,%20Science&rft.au=Sajadi,%20Farkhondeh%20Alsadat&rft.date=2018-12-01&rft.volume=42&rft.issue=4&rft.spage=2183&rft.epage=2187&rft.pages=2183-2187&rft.issn=1028-6276&rft.eissn=2364-1819&rft_id=info:doi/10.1007/s40995-017-0371-1&rft_dat=%3Cproquest_cross%3E2136866453%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2136866453&rft_id=info:pmid/&rfr_iscdi=true |