Distributed Deformation in an Oceanic Transform System: Applying Statistical Tools to Structural and Paleomagnetic Data Near the Húsavík‐Flatey Fault, Northern Iceland

The right‐lateral Húsavík‐Flatey fault is part of the Tjörnes Fracture Zone, which links the offshore and onshore rift axes in northern Iceland. There has been debate about whether rocks near this fault have accommodated distributed off‐fault deformation, which is testable using paleomagnetic data....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tectonics (Washington, D.C.) D.C.), 2018-10, Vol.37 (10), p.3986-4017
Hauptverfasser: Titus, Sarah J., Chapman, William, Horst, Andrew J., Brown, Maxwell, Davis, Joshua R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4017
container_issue 10
container_start_page 3986
container_title Tectonics (Washington, D.C.)
container_volume 37
creator Titus, Sarah J.
Chapman, William
Horst, Andrew J.
Brown, Maxwell
Davis, Joshua R.
description The right‐lateral Húsavík‐Flatey fault is part of the Tjörnes Fracture Zone, which links the offshore and onshore rift axes in northern Iceland. There has been debate about whether rocks near this fault have accommodated distributed off‐fault deformation, which is testable using paleomagnetic data. Recent studies from Flateyjarskagi show clockwise declination deflections that are largest near the fault. We augment these data with new structural and paleomagnetic measurements from 106 lava flows across three peninsulas—Flateyjarskagi, Tröllaskagi, and Tjörnes—also finding clockwise deflections that vary with distance from the fault. To test whether the deflections could be caused by off‐fault deformation, we combine our measurements with other regional data sets, applying several statistical tools including regressions of structural or paleomagnetic directions versus fault‐normal distance. To evaluate the significance and uncertainties of the regressions, we use permutation tests and bootstrapping. For Flateyjarskagi, our analysis suggests that lavas and dikes were deformed together; the regression results predict 4°–6° of rotation per kilometer about a steep, but not vertical, axis. Rocks on Tröllaskagi hint at similar spatial patterns with fault distance, but the data quality precludes a full analysis. Rocks on Tjörnes show no spatial patterns, but they preserve a temporal history, where rotation seems to have ceased after deposition of the Pliocene‐age Tjörnes beds. Using constraints from our statistical analyses, geochronology, and comparisons with the transform system in southern Iceland, we propose several modifications to models for the evolution of axial rift zones in northern Iceland. Key Points Paleomagnetic data show clockwise rotation of rocks near the Húsavík‐Flatey fault We use statistical tools such as regressions to analyze patterns of off‐fault deformation in directional data We propose a model for the tectonic evolution in north Iceland that incorporates our statistically derived results
doi_str_mv 10.1029/2018TC005096
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2136848937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2136848937</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3689-856ea1ce7d1a1e7c547cf36f7bc21aff132ca0f33b9c8a9d1c1ba1bfe9737ff33</originalsourceid><addsrcrecordid>eNp9kUFuFDEQRS0EEkNgxwFKYpsGu93TbrOLZjJJpChBSrNuVXvs4OCxB9sN6h1HyD0QF2Cbm3ASHA0LVmyqSr9e_b8oQl4z-pbRWr6rKev6FaVLKtsnZMFk01Sy1KdkQWvRVaKh4jl5kdIdpaxZtu2C_FjblKMdp6y3sNYmxB1mGzxYD-jhWmn0VkEf0afHJdzMKevdezjZ791s_S3c5HKQslXooA_BJcihiHFSeYpFQ7-FD-h02OGt14WDNWaEK40R8icN5w-_En59-Pn59_f7jcOsZ9jg5PIxXIVYgOjhQmlXbF6SZwZd0q_-9iPycXPar86ry-uzi9XJZYW87WTVLVuNTGmxZci0UMtGKMNbI0ZVMzSG8VohNZyPUnUot0yxEdlotBRcmKIfkTcH330MXyad8nAXpuhL5FCzEtF0kotCHR8oFUNKUZthH-0O4zwwOjy-Y_j3HQXnB_ybdXr-Lzv0p6u-LoPkfwBGZJH7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2136848937</pqid></control><display><type>article</type><title>Distributed Deformation in an Oceanic Transform System: Applying Statistical Tools to Structural and Paleomagnetic Data Near the Húsavík‐Flatey Fault, Northern Iceland</title><source>Wiley Online Library Free Content</source><source>Access via Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Library</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Titus, Sarah J. ; Chapman, William ; Horst, Andrew J. ; Brown, Maxwell ; Davis, Joshua R.</creator><creatorcontrib>Titus, Sarah J. ; Chapman, William ; Horst, Andrew J. ; Brown, Maxwell ; Davis, Joshua R.</creatorcontrib><description>The right‐lateral Húsavík‐Flatey fault is part of the Tjörnes Fracture Zone, which links the offshore and onshore rift axes in northern Iceland. There has been debate about whether rocks near this fault have accommodated distributed off‐fault deformation, which is testable using paleomagnetic data. Recent studies from Flateyjarskagi show clockwise declination deflections that are largest near the fault. We augment these data with new structural and paleomagnetic measurements from 106 lava flows across three peninsulas—Flateyjarskagi, Tröllaskagi, and Tjörnes—also finding clockwise deflections that vary with distance from the fault. To test whether the deflections could be caused by off‐fault deformation, we combine our measurements with other regional data sets, applying several statistical tools including regressions of structural or paleomagnetic directions versus fault‐normal distance. To evaluate the significance and uncertainties of the regressions, we use permutation tests and bootstrapping. For Flateyjarskagi, our analysis suggests that lavas and dikes were deformed together; the regression results predict 4°–6° of rotation per kilometer about a steep, but not vertical, axis. Rocks on Tröllaskagi hint at similar spatial patterns with fault distance, but the data quality precludes a full analysis. Rocks on Tjörnes show no spatial patterns, but they preserve a temporal history, where rotation seems to have ceased after deposition of the Pliocene‐age Tjörnes beds. Using constraints from our statistical analyses, geochronology, and comparisons with the transform system in southern Iceland, we propose several modifications to models for the evolution of axial rift zones in northern Iceland. Key Points Paleomagnetic data show clockwise rotation of rocks near the Húsavík‐Flatey fault We use statistical tools such as regressions to analyze patterns of off‐fault deformation in directional data We propose a model for the tectonic evolution in north Iceland that incorporates our statistically derived results</description><identifier>ISSN: 0278-7407</identifier><identifier>EISSN: 1944-9194</identifier><identifier>DOI: 10.1029/2018TC005096</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Data ; Deformation ; Dikes ; Distance ; Embankments ; Evolution ; Fracture zones ; Geochronology ; Geochronometry ; Iceland ; Lava ; Lava flows ; Offshore ; off‐fault deformation ; Palaeomagnetism ; Paleomagnetism ; Pliocene ; regression ; Rift zones ; Rock ; Rocks ; Rotation ; Statistical analysis ; Statistical methods ; transform fault</subject><ispartof>Tectonics (Washington, D.C.), 2018-10, Vol.37 (10), p.3986-4017</ispartof><rights>2018. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3689-856ea1ce7d1a1e7c547cf36f7bc21aff132ca0f33b9c8a9d1c1ba1bfe9737ff33</citedby><cites>FETCH-LOGICAL-a3689-856ea1ce7d1a1e7c547cf36f7bc21aff132ca0f33b9c8a9d1c1ba1bfe9737ff33</cites><orcidid>0000-0003-0299-0135 ; 0000-0002-1955-122X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2018TC005096$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2018TC005096$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids></links><search><creatorcontrib>Titus, Sarah J.</creatorcontrib><creatorcontrib>Chapman, William</creatorcontrib><creatorcontrib>Horst, Andrew J.</creatorcontrib><creatorcontrib>Brown, Maxwell</creatorcontrib><creatorcontrib>Davis, Joshua R.</creatorcontrib><title>Distributed Deformation in an Oceanic Transform System: Applying Statistical Tools to Structural and Paleomagnetic Data Near the Húsavík‐Flatey Fault, Northern Iceland</title><title>Tectonics (Washington, D.C.)</title><description>The right‐lateral Húsavík‐Flatey fault is part of the Tjörnes Fracture Zone, which links the offshore and onshore rift axes in northern Iceland. There has been debate about whether rocks near this fault have accommodated distributed off‐fault deformation, which is testable using paleomagnetic data. Recent studies from Flateyjarskagi show clockwise declination deflections that are largest near the fault. We augment these data with new structural and paleomagnetic measurements from 106 lava flows across three peninsulas—Flateyjarskagi, Tröllaskagi, and Tjörnes—also finding clockwise deflections that vary with distance from the fault. To test whether the deflections could be caused by off‐fault deformation, we combine our measurements with other regional data sets, applying several statistical tools including regressions of structural or paleomagnetic directions versus fault‐normal distance. To evaluate the significance and uncertainties of the regressions, we use permutation tests and bootstrapping. For Flateyjarskagi, our analysis suggests that lavas and dikes were deformed together; the regression results predict 4°–6° of rotation per kilometer about a steep, but not vertical, axis. Rocks on Tröllaskagi hint at similar spatial patterns with fault distance, but the data quality precludes a full analysis. Rocks on Tjörnes show no spatial patterns, but they preserve a temporal history, where rotation seems to have ceased after deposition of the Pliocene‐age Tjörnes beds. Using constraints from our statistical analyses, geochronology, and comparisons with the transform system in southern Iceland, we propose several modifications to models for the evolution of axial rift zones in northern Iceland. Key Points Paleomagnetic data show clockwise rotation of rocks near the Húsavík‐Flatey fault We use statistical tools such as regressions to analyze patterns of off‐fault deformation in directional data We propose a model for the tectonic evolution in north Iceland that incorporates our statistically derived results</description><subject>Data</subject><subject>Deformation</subject><subject>Dikes</subject><subject>Distance</subject><subject>Embankments</subject><subject>Evolution</subject><subject>Fracture zones</subject><subject>Geochronology</subject><subject>Geochronometry</subject><subject>Iceland</subject><subject>Lava</subject><subject>Lava flows</subject><subject>Offshore</subject><subject>off‐fault deformation</subject><subject>Palaeomagnetism</subject><subject>Paleomagnetism</subject><subject>Pliocene</subject><subject>regression</subject><subject>Rift zones</subject><subject>Rock</subject><subject>Rocks</subject><subject>Rotation</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>transform fault</subject><issn>0278-7407</issn><issn>1944-9194</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kUFuFDEQRS0EEkNgxwFKYpsGu93TbrOLZjJJpChBSrNuVXvs4OCxB9sN6h1HyD0QF2Cbm3ASHA0LVmyqSr9e_b8oQl4z-pbRWr6rKev6FaVLKtsnZMFk01Sy1KdkQWvRVaKh4jl5kdIdpaxZtu2C_FjblKMdp6y3sNYmxB1mGzxYD-jhWmn0VkEf0afHJdzMKevdezjZ791s_S3c5HKQslXooA_BJcihiHFSeYpFQ7-FD-h02OGt14WDNWaEK40R8icN5w-_En59-Pn59_f7jcOsZ9jg5PIxXIVYgOjhQmlXbF6SZwZd0q_-9iPycXPar86ry-uzi9XJZYW87WTVLVuNTGmxZci0UMtGKMNbI0ZVMzSG8VohNZyPUnUot0yxEdlotBRcmKIfkTcH330MXyad8nAXpuhL5FCzEtF0kotCHR8oFUNKUZthH-0O4zwwOjy-Y_j3HQXnB_ybdXr-Lzv0p6u-LoPkfwBGZJH7</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Titus, Sarah J.</creator><creator>Chapman, William</creator><creator>Horst, Andrew J.</creator><creator>Brown, Maxwell</creator><creator>Davis, Joshua R.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0003-0299-0135</orcidid><orcidid>https://orcid.org/0000-0002-1955-122X</orcidid></search><sort><creationdate>201810</creationdate><title>Distributed Deformation in an Oceanic Transform System: Applying Statistical Tools to Structural and Paleomagnetic Data Near the Húsavík‐Flatey Fault, Northern Iceland</title><author>Titus, Sarah J. ; Chapman, William ; Horst, Andrew J. ; Brown, Maxwell ; Davis, Joshua R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3689-856ea1ce7d1a1e7c547cf36f7bc21aff132ca0f33b9c8a9d1c1ba1bfe9737ff33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Data</topic><topic>Deformation</topic><topic>Dikes</topic><topic>Distance</topic><topic>Embankments</topic><topic>Evolution</topic><topic>Fracture zones</topic><topic>Geochronology</topic><topic>Geochronometry</topic><topic>Iceland</topic><topic>Lava</topic><topic>Lava flows</topic><topic>Offshore</topic><topic>off‐fault deformation</topic><topic>Palaeomagnetism</topic><topic>Paleomagnetism</topic><topic>Pliocene</topic><topic>regression</topic><topic>Rift zones</topic><topic>Rock</topic><topic>Rocks</topic><topic>Rotation</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>transform fault</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Titus, Sarah J.</creatorcontrib><creatorcontrib>Chapman, William</creatorcontrib><creatorcontrib>Horst, Andrew J.</creatorcontrib><creatorcontrib>Brown, Maxwell</creatorcontrib><creatorcontrib>Davis, Joshua R.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Tectonics (Washington, D.C.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Titus, Sarah J.</au><au>Chapman, William</au><au>Horst, Andrew J.</au><au>Brown, Maxwell</au><au>Davis, Joshua R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed Deformation in an Oceanic Transform System: Applying Statistical Tools to Structural and Paleomagnetic Data Near the Húsavík‐Flatey Fault, Northern Iceland</atitle><jtitle>Tectonics (Washington, D.C.)</jtitle><date>2018-10</date><risdate>2018</risdate><volume>37</volume><issue>10</issue><spage>3986</spage><epage>4017</epage><pages>3986-4017</pages><issn>0278-7407</issn><eissn>1944-9194</eissn><abstract>The right‐lateral Húsavík‐Flatey fault is part of the Tjörnes Fracture Zone, which links the offshore and onshore rift axes in northern Iceland. There has been debate about whether rocks near this fault have accommodated distributed off‐fault deformation, which is testable using paleomagnetic data. Recent studies from Flateyjarskagi show clockwise declination deflections that are largest near the fault. We augment these data with new structural and paleomagnetic measurements from 106 lava flows across three peninsulas—Flateyjarskagi, Tröllaskagi, and Tjörnes—also finding clockwise deflections that vary with distance from the fault. To test whether the deflections could be caused by off‐fault deformation, we combine our measurements with other regional data sets, applying several statistical tools including regressions of structural or paleomagnetic directions versus fault‐normal distance. To evaluate the significance and uncertainties of the regressions, we use permutation tests and bootstrapping. For Flateyjarskagi, our analysis suggests that lavas and dikes were deformed together; the regression results predict 4°–6° of rotation per kilometer about a steep, but not vertical, axis. Rocks on Tröllaskagi hint at similar spatial patterns with fault distance, but the data quality precludes a full analysis. Rocks on Tjörnes show no spatial patterns, but they preserve a temporal history, where rotation seems to have ceased after deposition of the Pliocene‐age Tjörnes beds. Using constraints from our statistical analyses, geochronology, and comparisons with the transform system in southern Iceland, we propose several modifications to models for the evolution of axial rift zones in northern Iceland. Key Points Paleomagnetic data show clockwise rotation of rocks near the Húsavík‐Flatey fault We use statistical tools such as regressions to analyze patterns of off‐fault deformation in directional data We propose a model for the tectonic evolution in north Iceland that incorporates our statistically derived results</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2018TC005096</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0003-0299-0135</orcidid><orcidid>https://orcid.org/0000-0002-1955-122X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0278-7407
ispartof Tectonics (Washington, D.C.), 2018-10, Vol.37 (10), p.3986-4017
issn 0278-7407
1944-9194
language eng
recordid cdi_proquest_journals_2136848937
source Wiley Online Library Free Content; Access via Wiley Online Library; Wiley-Blackwell AGU Digital Library; EZB-FREE-00999 freely available EZB journals
subjects Data
Deformation
Dikes
Distance
Embankments
Evolution
Fracture zones
Geochronology
Geochronometry
Iceland
Lava
Lava flows
Offshore
off‐fault deformation
Palaeomagnetism
Paleomagnetism
Pliocene
regression
Rift zones
Rock
Rocks
Rotation
Statistical analysis
Statistical methods
transform fault
title Distributed Deformation in an Oceanic Transform System: Applying Statistical Tools to Structural and Paleomagnetic Data Near the Húsavík‐Flatey Fault, Northern Iceland
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T04%3A45%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20Deformation%20in%20an%20Oceanic%20Transform%20System:%20Applying%20Statistical%20Tools%20to%20Structural%20and%20Paleomagnetic%20Data%20Near%20the%20H%C3%BAsav%C3%ADk%E2%80%90Flatey%20Fault,%20Northern%20Iceland&rft.jtitle=Tectonics%20(Washington,%20D.C.)&rft.au=Titus,%20Sarah%20J.&rft.date=2018-10&rft.volume=37&rft.issue=10&rft.spage=3986&rft.epage=4017&rft.pages=3986-4017&rft.issn=0278-7407&rft.eissn=1944-9194&rft_id=info:doi/10.1029/2018TC005096&rft_dat=%3Cproquest_cross%3E2136848937%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2136848937&rft_id=info:pmid/&rfr_iscdi=true