Surrogate-assisted parallel tempering for Bayesian neural learning

Due to the need for robust uncertainty quantification, Bayesian neural learning has gained attention in the era of deep learning and big data. Markov Chain Monte-Carlo (MCMC) methods typically implement Bayesian inference which faces several challenges given a large number of parameters, complex and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-05
Hauptverfasser: Chandra, Rohitash, Jain, Konark, Kapoor, Arpit, Ashray Aman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!