Design and Analysis of Two-Level Factorial Experiments With Partial Replication
In a two-level factorial experiment, we consider construction of parallel-flats designs with two identical parallel flats that allow estimation of a set of specified possibly active effects and the pure error variance. A set of sufficient conditions is presented for the designs to be D-optimal for t...
Gespeichert in:
Veröffentlicht in: | Technometrics 2009-02, Vol.51 (1), p.66-74 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 74 |
---|---|
container_issue | 1 |
container_start_page | 66 |
container_title | Technometrics |
container_volume | 51 |
creator | Liao, Chen-Tuo Chai, Feng-Shun |
description | In a two-level factorial experiment, we consider construction of parallel-flats designs with two identical parallel flats that allow estimation of a set of specified possibly active effects and the pure error variance. A set of sufficient conditions is presented for the designs to be D-optimal for the specified effects, assuming that the other effects are negligible, over the class of competing parallel-flats designs. In addition, an algorithm is developed to generate the D-optimal designs with a choice of flexible degrees of freedom for the pure error variance. Because the proposed partially replicated designs are highly efficient in estimating the possibly active effects and provide a replication-based estimate of the error variance, they provide a practical compromise between the power in identifying truly active effects and the number of runs in experiments. This property is verified through a simulation study. |
doi_str_mv | 10.1198/TECH.2009.0007 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_213673510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40586564</jstor_id><sourcerecordid>40586564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-7ff093c1142cceae8ccd0021e59cc2af84d2365f26dd0dffb098c99743aa21fd3</originalsourceid><addsrcrecordid>eNp1kM1LwzAYxoMoOD-u3oQieOx8k7RNcxxzU2EwkYnH8JommtE1M-nU_fe2THfz9B6eD573R8gFhSGlsrxZTMb3QwYghwAgDsiA5lykTDB-SAYAGaRUQHFMTmJcAlDOSjEg81sT3VuTYFMlowbrbXQx8TZZfPl0Zj5NnUxRtz44rJPJ99oEtzJNG5MX174njxjaXngy69ppbJ1vzsiRxTqa8997Sp6nk8X4Pp3N7x7Go1mqeVG2qbAWJNeUZkxrg6bUugJg1ORSa4a2zCrGi9yyoqqgsvYVZKmlFBlHZNRW_JRc7XrXwX9sTGzV0m9C90BUjPJC8JxCZxruTDr4GIOxat3tx7BVFFTPTPXMVM9M9cy6wPVvK0aNtQ3YaBf3KUZFzgSXne9y51vGjs1ezyAvi7zIOl3udNdYH1b45UNdqRa3tQ9_pfyfDT9yZoiN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213673510</pqid></control><display><type>article</type><title>Design and Analysis of Two-Level Factorial Experiments With Partial Replication</title><source>Jstor Complete Legacy</source><source>JSTOR Mathematics & Statistics</source><creator>Liao, Chen-Tuo ; Chai, Feng-Shun</creator><creatorcontrib>Liao, Chen-Tuo ; Chai, Feng-Shun</creatorcontrib><description>In a two-level factorial experiment, we consider construction of parallel-flats designs with two identical parallel flats that allow estimation of a set of specified possibly active effects and the pure error variance. A set of sufficient conditions is presented for the designs to be D-optimal for the specified effects, assuming that the other effects are negligible, over the class of competing parallel-flats designs. In addition, an algorithm is developed to generate the D-optimal designs with a choice of flexible degrees of freedom for the pure error variance. Because the proposed partially replicated designs are highly efficient in estimating the possibly active effects and provide a replication-based estimate of the error variance, they provide a practical compromise between the power in identifying truly active effects and the number of runs in experiments. This property is verified through a simulation study.</description><identifier>ISSN: 0040-1706</identifier><identifier>EISSN: 1537-2723</identifier><identifier>DOI: 10.1198/TECH.2009.0007</identifier><identifier>CODEN: TCMTA2</identifier><language>eng</language><publisher>Alexandria, VA: Taylor & Francis</publisher><subject>Active effect ; Analytical estimating ; Applied sciences ; Cost control ; Decision theory. Utility theory ; Design analysis ; Exact sciences and technology ; Experiment design ; Experimental design ; Experimental replication ; Factorial design ; Factorial experiments ; Factorials ; Industrial design ; Least squares ; Mathematics ; Matrices ; Operational research and scientific management ; Operational research. Management science ; Parallel-flats design ; Power ; Probability and statistics ; Pure error ; Random variables ; Sciences and techniques of general use ; Simulation ; Statistical variance ; Statistics ; Studies ; Unreplicated design</subject><ispartof>Technometrics, 2009-02, Vol.51 (1), p.66-74</ispartof><rights>2009 American Statistical Association and the American Society for Quality 2009</rights><rights>Copyright 2009 American Statistical Association and the American Society for Quality</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Society for Quality Feb 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-7ff093c1142cceae8ccd0021e59cc2af84d2365f26dd0dffb098c99743aa21fd3</citedby><cites>FETCH-LOGICAL-c368t-7ff093c1142cceae8ccd0021e59cc2af84d2365f26dd0dffb098c99743aa21fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40586564$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40586564$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27901,27902,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21752739$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Liao, Chen-Tuo</creatorcontrib><creatorcontrib>Chai, Feng-Shun</creatorcontrib><title>Design and Analysis of Two-Level Factorial Experiments With Partial Replication</title><title>Technometrics</title><description>In a two-level factorial experiment, we consider construction of parallel-flats designs with two identical parallel flats that allow estimation of a set of specified possibly active effects and the pure error variance. A set of sufficient conditions is presented for the designs to be D-optimal for the specified effects, assuming that the other effects are negligible, over the class of competing parallel-flats designs. In addition, an algorithm is developed to generate the D-optimal designs with a choice of flexible degrees of freedom for the pure error variance. Because the proposed partially replicated designs are highly efficient in estimating the possibly active effects and provide a replication-based estimate of the error variance, they provide a practical compromise between the power in identifying truly active effects and the number of runs in experiments. This property is verified through a simulation study.</description><subject>Active effect</subject><subject>Analytical estimating</subject><subject>Applied sciences</subject><subject>Cost control</subject><subject>Decision theory. Utility theory</subject><subject>Design analysis</subject><subject>Exact sciences and technology</subject><subject>Experiment design</subject><subject>Experimental design</subject><subject>Experimental replication</subject><subject>Factorial design</subject><subject>Factorial experiments</subject><subject>Factorials</subject><subject>Industrial design</subject><subject>Least squares</subject><subject>Mathematics</subject><subject>Matrices</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Parallel-flats design</subject><subject>Power</subject><subject>Probability and statistics</subject><subject>Pure error</subject><subject>Random variables</subject><subject>Sciences and techniques of general use</subject><subject>Simulation</subject><subject>Statistical variance</subject><subject>Statistics</subject><subject>Studies</subject><subject>Unreplicated design</subject><issn>0040-1706</issn><issn>1537-2723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kM1LwzAYxoMoOD-u3oQieOx8k7RNcxxzU2EwkYnH8JommtE1M-nU_fe2THfz9B6eD573R8gFhSGlsrxZTMb3QwYghwAgDsiA5lykTDB-SAYAGaRUQHFMTmJcAlDOSjEg81sT3VuTYFMlowbrbXQx8TZZfPl0Zj5NnUxRtz44rJPJ99oEtzJNG5MX174njxjaXngy69ppbJ1vzsiRxTqa8997Sp6nk8X4Pp3N7x7Go1mqeVG2qbAWJNeUZkxrg6bUugJg1ORSa4a2zCrGi9yyoqqgsvYVZKmlFBlHZNRW_JRc7XrXwX9sTGzV0m9C90BUjPJC8JxCZxruTDr4GIOxat3tx7BVFFTPTPXMVM9M9cy6wPVvK0aNtQ3YaBf3KUZFzgSXne9y51vGjs1ezyAvi7zIOl3udNdYH1b45UNdqRa3tQ9_pfyfDT9yZoiN</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Liao, Chen-Tuo</creator><creator>Chai, Feng-Shun</creator><general>Taylor & Francis</general><general>The American Society for Quality and The American Statistical Association</general><general>American Society for Quality and the American Statistical Association</general><general>American Society for Quality</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20090201</creationdate><title>Design and Analysis of Two-Level Factorial Experiments With Partial Replication</title><author>Liao, Chen-Tuo ; Chai, Feng-Shun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-7ff093c1142cceae8ccd0021e59cc2af84d2365f26dd0dffb098c99743aa21fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Active effect</topic><topic>Analytical estimating</topic><topic>Applied sciences</topic><topic>Cost control</topic><topic>Decision theory. Utility theory</topic><topic>Design analysis</topic><topic>Exact sciences and technology</topic><topic>Experiment design</topic><topic>Experimental design</topic><topic>Experimental replication</topic><topic>Factorial design</topic><topic>Factorial experiments</topic><topic>Factorials</topic><topic>Industrial design</topic><topic>Least squares</topic><topic>Mathematics</topic><topic>Matrices</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Parallel-flats design</topic><topic>Power</topic><topic>Probability and statistics</topic><topic>Pure error</topic><topic>Random variables</topic><topic>Sciences and techniques of general use</topic><topic>Simulation</topic><topic>Statistical variance</topic><topic>Statistics</topic><topic>Studies</topic><topic>Unreplicated design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liao, Chen-Tuo</creatorcontrib><creatorcontrib>Chai, Feng-Shun</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Technometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liao, Chen-Tuo</au><au>Chai, Feng-Shun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Analysis of Two-Level Factorial Experiments With Partial Replication</atitle><jtitle>Technometrics</jtitle><date>2009-02-01</date><risdate>2009</risdate><volume>51</volume><issue>1</issue><spage>66</spage><epage>74</epage><pages>66-74</pages><issn>0040-1706</issn><eissn>1537-2723</eissn><coden>TCMTA2</coden><abstract>In a two-level factorial experiment, we consider construction of parallel-flats designs with two identical parallel flats that allow estimation of a set of specified possibly active effects and the pure error variance. A set of sufficient conditions is presented for the designs to be D-optimal for the specified effects, assuming that the other effects are negligible, over the class of competing parallel-flats designs. In addition, an algorithm is developed to generate the D-optimal designs with a choice of flexible degrees of freedom for the pure error variance. Because the proposed partially replicated designs are highly efficient in estimating the possibly active effects and provide a replication-based estimate of the error variance, they provide a practical compromise between the power in identifying truly active effects and the number of runs in experiments. This property is verified through a simulation study.</abstract><cop>Alexandria, VA</cop><pub>Taylor & Francis</pub><doi>10.1198/TECH.2009.0007</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-1706 |
ispartof | Technometrics, 2009-02, Vol.51 (1), p.66-74 |
issn | 0040-1706 1537-2723 |
language | eng |
recordid | cdi_proquest_journals_213673510 |
source | Jstor Complete Legacy; JSTOR Mathematics & Statistics |
subjects | Active effect Analytical estimating Applied sciences Cost control Decision theory. Utility theory Design analysis Exact sciences and technology Experiment design Experimental design Experimental replication Factorial design Factorial experiments Factorials Industrial design Least squares Mathematics Matrices Operational research and scientific management Operational research. Management science Parallel-flats design Power Probability and statistics Pure error Random variables Sciences and techniques of general use Simulation Statistical variance Statistics Studies Unreplicated design |
title | Design and Analysis of Two-Level Factorial Experiments With Partial Replication |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T06%3A59%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Analysis%20of%20Two-Level%20Factorial%20Experiments%20With%20Partial%20Replication&rft.jtitle=Technometrics&rft.au=Liao,%20Chen-Tuo&rft.date=2009-02-01&rft.volume=51&rft.issue=1&rft.spage=66&rft.epage=74&rft.pages=66-74&rft.issn=0040-1706&rft.eissn=1537-2723&rft.coden=TCMTA2&rft_id=info:doi/10.1198/TECH.2009.0007&rft_dat=%3Cjstor_proqu%3E40586564%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213673510&rft_id=info:pmid/&rft_jstor_id=40586564&rfr_iscdi=true |