Status of the HOLMES Experiment to Directly Measure the Neutrino Mass

The assessment of neutrino absolute mass scale is still a crucial challenge in today particle physics and cosmology. Beta or electron capture spectrum end-point study is currently the only experimental method which can provide a model-independent measurement of the absolute scale of neutrino mass. H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:J.Low Temp.Phys 2018-12, Vol.193 (5-6), p.1137-1145
Hauptverfasser: Nucciotti, A., Alpert, B., Balata, M., Becker, D., Bennett, D., Bevilacqua, A., Biasotti, M., Ceriale, V., Ceruti, G., Corsini, D., De Gerone, M., Dressler, R., Faverzani, M., Ferri, E., Fowler, J., Gallucci, G., Gard, J., Gatti, F., Giachero, A., Hays-Wehle, J., Heinitz, S., Hilton, G., Köster, U., Lusignoli, M., Mates, J., Nisi, S., Orlando, A., Parodi, L., Pessina, G., Puiu, A., Ragazzi, S., Reintsema, C., Ribeiro-Gomez, M., Schmidt, D., Schuman, D., Siccardi, F., Swetz, D., Ullom, J., Vale, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1145
container_issue 5-6
container_start_page 1137
container_title J.Low Temp.Phys
container_volume 193
creator Nucciotti, A.
Alpert, B.
Balata, M.
Becker, D.
Bennett, D.
Bevilacqua, A.
Biasotti, M.
Ceriale, V.
Ceruti, G.
Corsini, D.
De Gerone, M.
Dressler, R.
Faverzani, M.
Ferri, E.
Fowler, J.
Gallucci, G.
Gard, J.
Gatti, F.
Giachero, A.
Hays-Wehle, J.
Heinitz, S.
Hilton, G.
Köster, U.
Lusignoli, M.
Mates, J.
Nisi, S.
Orlando, A.
Parodi, L.
Pessina, G.
Puiu, A.
Ragazzi, S.
Reintsema, C.
Ribeiro-Gomez, M.
Schmidt, D.
Schuman, D.
Siccardi, F.
Swetz, D.
Ullom, J.
Vale, L.
description The assessment of neutrino absolute mass scale is still a crucial challenge in today particle physics and cosmology. Beta or electron capture spectrum end-point study is currently the only experimental method which can provide a model-independent measurement of the absolute scale of neutrino mass. HOLMES is an experiment funded by the European Research Council to directly measure the neutrino mass. HOLMES will perform a calorimetric measurement of the energy released in the electron capture decay of the artificial isotope 163 Ho. In a calorimetric measurement, the energy released in the decay process is entirely contained into the detector, except for the fraction taken away by the neutrino. This approach eliminates both the issues related to the use of an external source and the systematic uncertainties arising from decays on excited final states. The most suitable detectors for this type of measurement are low-temperature thermal detectors, where all the energy released into an absorber is converted into a temperature increase that can be measured by a sensitive thermometer directly coupled with the absorber. This measurement was originally proposed by De Rujula and Lusignoli (Nucl Phys B 219:277, 1983 . https://doi.org/10.1016/0550-3213(83)90642-9 ), but only in the last decade the technological progress in detectors development has allowed to design a sensitive experiment. HOLMES plans to deploy a large array of low-temperature microcalorimeters with implanted 163 Ho nuclei. In this contribution we outline the HOLMES project with its physics reach and technical challenges, along with its status and perspectives.
doi_str_mv 10.1007/s10909-018-2025-x
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_journals_2136592701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2136592701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-ac43924ae7c99ba633526c856b6b0efd03878acc6beb72a5d2a1c81a6c78e3ab3</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EEqXwAGyWmBgMZzux47GCQpFSOhRmy3EdmqokxXZQ-_YkBMHEdNLp-z_d_QhdUrihAPI2UFCgCNCMMGAp2R-hEU0lJ5Kn8hiNABgjjCl6is5C2ACAygQfoekymtgG3JQ4rh2eLfL5dImn-53z1burI44Nvq-8s3F7wHNnQuvdN_ns2uirusFzE8I5OinNNriLnzlGrw_Tl7sZyRePT3eTnNiEikiMTbhiiXHSKlUYwXnKhM1SUYgCXLkCnsnMWCsKV0hm0hUz1GbUCCszx03Bx-h68K7NVu-6C40_6MZUejbJdb_r_hdUJeqTduzVwO5889G6EPWmaX3dnacZ5SJVTEJP0YGyvgnBu_JXS0H3zeqh2d6s-2b1vsuwIRM6tn5z_s_8f-gL7yJ6RQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2136592701</pqid></control><display><type>article</type><title>Status of the HOLMES Experiment to Directly Measure the Neutrino Mass</title><source>SpringerLink Journals - AutoHoldings</source><creator>Nucciotti, A. ; Alpert, B. ; Balata, M. ; Becker, D. ; Bennett, D. ; Bevilacqua, A. ; Biasotti, M. ; Ceriale, V. ; Ceruti, G. ; Corsini, D. ; De Gerone, M. ; Dressler, R. ; Faverzani, M. ; Ferri, E. ; Fowler, J. ; Gallucci, G. ; Gard, J. ; Gatti, F. ; Giachero, A. ; Hays-Wehle, J. ; Heinitz, S. ; Hilton, G. ; Köster, U. ; Lusignoli, M. ; Mates, J. ; Nisi, S. ; Orlando, A. ; Parodi, L. ; Pessina, G. ; Puiu, A. ; Ragazzi, S. ; Reintsema, C. ; Ribeiro-Gomez, M. ; Schmidt, D. ; Schuman, D. ; Siccardi, F. ; Swetz, D. ; Ullom, J. ; Vale, L.</creator><creatorcontrib>Nucciotti, A. ; Alpert, B. ; Balata, M. ; Becker, D. ; Bennett, D. ; Bevilacqua, A. ; Biasotti, M. ; Ceriale, V. ; Ceruti, G. ; Corsini, D. ; De Gerone, M. ; Dressler, R. ; Faverzani, M. ; Ferri, E. ; Fowler, J. ; Gallucci, G. ; Gard, J. ; Gatti, F. ; Giachero, A. ; Hays-Wehle, J. ; Heinitz, S. ; Hilton, G. ; Köster, U. ; Lusignoli, M. ; Mates, J. ; Nisi, S. ; Orlando, A. ; Parodi, L. ; Pessina, G. ; Puiu, A. ; Ragazzi, S. ; Reintsema, C. ; Ribeiro-Gomez, M. ; Schmidt, D. ; Schuman, D. ; Siccardi, F. ; Swetz, D. ; Ullom, J. ; Vale, L.</creatorcontrib><description>The assessment of neutrino absolute mass scale is still a crucial challenge in today particle physics and cosmology. Beta or electron capture spectrum end-point study is currently the only experimental method which can provide a model-independent measurement of the absolute scale of neutrino mass. HOLMES is an experiment funded by the European Research Council to directly measure the neutrino mass. HOLMES will perform a calorimetric measurement of the energy released in the electron capture decay of the artificial isotope 163 Ho. In a calorimetric measurement, the energy released in the decay process is entirely contained into the detector, except for the fraction taken away by the neutrino. This approach eliminates both the issues related to the use of an external source and the systematic uncertainties arising from decays on excited final states. The most suitable detectors for this type of measurement are low-temperature thermal detectors, where all the energy released into an absorber is converted into a temperature increase that can be measured by a sensitive thermometer directly coupled with the absorber. This measurement was originally proposed by De Rujula and Lusignoli (Nucl Phys B 219:277, 1983 . https://doi.org/10.1016/0550-3213(83)90642-9 ), but only in the last decade the technological progress in detectors development has allowed to design a sensitive experiment. HOLMES plans to deploy a large array of low-temperature microcalorimeters with implanted 163 Ho nuclei. In this contribution we outline the HOLMES project with its physics reach and technical challenges, along with its status and perspectives.</description><identifier>ISSN: 0022-2291</identifier><identifier>EISSN: 1573-7357</identifier><identifier>DOI: 10.1007/s10909-018-2025-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Absorbers ; Beta decay ; Beta rays ; Calorimeters ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; Cosmology ; Detectors ; Electron capture ; Energy measurement ; Experiments ; Heat measurement ; High Energy Physics - Experiment ; Instrumentation and Detectors ; Low temperature physics ; Magnetic Materials ; Magnetism ; Neutrinos ; Nuclear Experiment ; Particle physics ; Physics ; Physics and Astronomy ; Sensors</subject><ispartof>J.Low Temp.Phys, 2018-12, Vol.193 (5-6), p.1137-1145</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-ac43924ae7c99ba633526c856b6b0efd03878acc6beb72a5d2a1c81a6c78e3ab3</citedby><cites>FETCH-LOGICAL-c416t-ac43924ae7c99ba633526c856b6b0efd03878acc6beb72a5d2a1c81a6c78e3ab3</cites><orcidid>0000-0002-8458-1556</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10909-018-2025-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10909-018-2025-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01861949$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Nucciotti, A.</creatorcontrib><creatorcontrib>Alpert, B.</creatorcontrib><creatorcontrib>Balata, M.</creatorcontrib><creatorcontrib>Becker, D.</creatorcontrib><creatorcontrib>Bennett, D.</creatorcontrib><creatorcontrib>Bevilacqua, A.</creatorcontrib><creatorcontrib>Biasotti, M.</creatorcontrib><creatorcontrib>Ceriale, V.</creatorcontrib><creatorcontrib>Ceruti, G.</creatorcontrib><creatorcontrib>Corsini, D.</creatorcontrib><creatorcontrib>De Gerone, M.</creatorcontrib><creatorcontrib>Dressler, R.</creatorcontrib><creatorcontrib>Faverzani, M.</creatorcontrib><creatorcontrib>Ferri, E.</creatorcontrib><creatorcontrib>Fowler, J.</creatorcontrib><creatorcontrib>Gallucci, G.</creatorcontrib><creatorcontrib>Gard, J.</creatorcontrib><creatorcontrib>Gatti, F.</creatorcontrib><creatorcontrib>Giachero, A.</creatorcontrib><creatorcontrib>Hays-Wehle, J.</creatorcontrib><creatorcontrib>Heinitz, S.</creatorcontrib><creatorcontrib>Hilton, G.</creatorcontrib><creatorcontrib>Köster, U.</creatorcontrib><creatorcontrib>Lusignoli, M.</creatorcontrib><creatorcontrib>Mates, J.</creatorcontrib><creatorcontrib>Nisi, S.</creatorcontrib><creatorcontrib>Orlando, A.</creatorcontrib><creatorcontrib>Parodi, L.</creatorcontrib><creatorcontrib>Pessina, G.</creatorcontrib><creatorcontrib>Puiu, A.</creatorcontrib><creatorcontrib>Ragazzi, S.</creatorcontrib><creatorcontrib>Reintsema, C.</creatorcontrib><creatorcontrib>Ribeiro-Gomez, M.</creatorcontrib><creatorcontrib>Schmidt, D.</creatorcontrib><creatorcontrib>Schuman, D.</creatorcontrib><creatorcontrib>Siccardi, F.</creatorcontrib><creatorcontrib>Swetz, D.</creatorcontrib><creatorcontrib>Ullom, J.</creatorcontrib><creatorcontrib>Vale, L.</creatorcontrib><title>Status of the HOLMES Experiment to Directly Measure the Neutrino Mass</title><title>J.Low Temp.Phys</title><addtitle>J Low Temp Phys</addtitle><description>The assessment of neutrino absolute mass scale is still a crucial challenge in today particle physics and cosmology. Beta or electron capture spectrum end-point study is currently the only experimental method which can provide a model-independent measurement of the absolute scale of neutrino mass. HOLMES is an experiment funded by the European Research Council to directly measure the neutrino mass. HOLMES will perform a calorimetric measurement of the energy released in the electron capture decay of the artificial isotope 163 Ho. In a calorimetric measurement, the energy released in the decay process is entirely contained into the detector, except for the fraction taken away by the neutrino. This approach eliminates both the issues related to the use of an external source and the systematic uncertainties arising from decays on excited final states. The most suitable detectors for this type of measurement are low-temperature thermal detectors, where all the energy released into an absorber is converted into a temperature increase that can be measured by a sensitive thermometer directly coupled with the absorber. This measurement was originally proposed by De Rujula and Lusignoli (Nucl Phys B 219:277, 1983 . https://doi.org/10.1016/0550-3213(83)90642-9 ), but only in the last decade the technological progress in detectors development has allowed to design a sensitive experiment. HOLMES plans to deploy a large array of low-temperature microcalorimeters with implanted 163 Ho nuclei. In this contribution we outline the HOLMES project with its physics reach and technical challenges, along with its status and perspectives.</description><subject>Absorbers</subject><subject>Beta decay</subject><subject>Beta rays</subject><subject>Calorimeters</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Cosmology</subject><subject>Detectors</subject><subject>Electron capture</subject><subject>Energy measurement</subject><subject>Experiments</subject><subject>Heat measurement</subject><subject>High Energy Physics - Experiment</subject><subject>Instrumentation and Detectors</subject><subject>Low temperature physics</subject><subject>Magnetic Materials</subject><subject>Magnetism</subject><subject>Neutrinos</subject><subject>Nuclear Experiment</subject><subject>Particle physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Sensors</subject><issn>0022-2291</issn><issn>1573-7357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAQhi0EEqXwAGyWmBgMZzux47GCQpFSOhRmy3EdmqokxXZQ-_YkBMHEdNLp-z_d_QhdUrihAPI2UFCgCNCMMGAp2R-hEU0lJ5Kn8hiNABgjjCl6is5C2ACAygQfoekymtgG3JQ4rh2eLfL5dImn-53z1burI44Nvq-8s3F7wHNnQuvdN_ns2uirusFzE8I5OinNNriLnzlGrw_Tl7sZyRePT3eTnNiEikiMTbhiiXHSKlUYwXnKhM1SUYgCXLkCnsnMWCsKV0hm0hUz1GbUCCszx03Bx-h68K7NVu-6C40_6MZUejbJdb_r_hdUJeqTduzVwO5889G6EPWmaX3dnacZ5SJVTEJP0YGyvgnBu_JXS0H3zeqh2d6s-2b1vsuwIRM6tn5z_s_8f-gL7yJ6RQ</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Nucciotti, A.</creator><creator>Alpert, B.</creator><creator>Balata, M.</creator><creator>Becker, D.</creator><creator>Bennett, D.</creator><creator>Bevilacqua, A.</creator><creator>Biasotti, M.</creator><creator>Ceriale, V.</creator><creator>Ceruti, G.</creator><creator>Corsini, D.</creator><creator>De Gerone, M.</creator><creator>Dressler, R.</creator><creator>Faverzani, M.</creator><creator>Ferri, E.</creator><creator>Fowler, J.</creator><creator>Gallucci, G.</creator><creator>Gard, J.</creator><creator>Gatti, F.</creator><creator>Giachero, A.</creator><creator>Hays-Wehle, J.</creator><creator>Heinitz, S.</creator><creator>Hilton, G.</creator><creator>Köster, U.</creator><creator>Lusignoli, M.</creator><creator>Mates, J.</creator><creator>Nisi, S.</creator><creator>Orlando, A.</creator><creator>Parodi, L.</creator><creator>Pessina, G.</creator><creator>Puiu, A.</creator><creator>Ragazzi, S.</creator><creator>Reintsema, C.</creator><creator>Ribeiro-Gomez, M.</creator><creator>Schmidt, D.</creator><creator>Schuman, D.</creator><creator>Siccardi, F.</creator><creator>Swetz, D.</creator><creator>Ullom, J.</creator><creator>Vale, L.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8458-1556</orcidid></search><sort><creationdate>20181201</creationdate><title>Status of the HOLMES Experiment to Directly Measure the Neutrino Mass</title><author>Nucciotti, A. ; Alpert, B. ; Balata, M. ; Becker, D. ; Bennett, D. ; Bevilacqua, A. ; Biasotti, M. ; Ceriale, V. ; Ceruti, G. ; Corsini, D. ; De Gerone, M. ; Dressler, R. ; Faverzani, M. ; Ferri, E. ; Fowler, J. ; Gallucci, G. ; Gard, J. ; Gatti, F. ; Giachero, A. ; Hays-Wehle, J. ; Heinitz, S. ; Hilton, G. ; Köster, U. ; Lusignoli, M. ; Mates, J. ; Nisi, S. ; Orlando, A. ; Parodi, L. ; Pessina, G. ; Puiu, A. ; Ragazzi, S. ; Reintsema, C. ; Ribeiro-Gomez, M. ; Schmidt, D. ; Schuman, D. ; Siccardi, F. ; Swetz, D. ; Ullom, J. ; Vale, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-ac43924ae7c99ba633526c856b6b0efd03878acc6beb72a5d2a1c81a6c78e3ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Absorbers</topic><topic>Beta decay</topic><topic>Beta rays</topic><topic>Calorimeters</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Cosmology</topic><topic>Detectors</topic><topic>Electron capture</topic><topic>Energy measurement</topic><topic>Experiments</topic><topic>Heat measurement</topic><topic>High Energy Physics - Experiment</topic><topic>Instrumentation and Detectors</topic><topic>Low temperature physics</topic><topic>Magnetic Materials</topic><topic>Magnetism</topic><topic>Neutrinos</topic><topic>Nuclear Experiment</topic><topic>Particle physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nucciotti, A.</creatorcontrib><creatorcontrib>Alpert, B.</creatorcontrib><creatorcontrib>Balata, M.</creatorcontrib><creatorcontrib>Becker, D.</creatorcontrib><creatorcontrib>Bennett, D.</creatorcontrib><creatorcontrib>Bevilacqua, A.</creatorcontrib><creatorcontrib>Biasotti, M.</creatorcontrib><creatorcontrib>Ceriale, V.</creatorcontrib><creatorcontrib>Ceruti, G.</creatorcontrib><creatorcontrib>Corsini, D.</creatorcontrib><creatorcontrib>De Gerone, M.</creatorcontrib><creatorcontrib>Dressler, R.</creatorcontrib><creatorcontrib>Faverzani, M.</creatorcontrib><creatorcontrib>Ferri, E.</creatorcontrib><creatorcontrib>Fowler, J.</creatorcontrib><creatorcontrib>Gallucci, G.</creatorcontrib><creatorcontrib>Gard, J.</creatorcontrib><creatorcontrib>Gatti, F.</creatorcontrib><creatorcontrib>Giachero, A.</creatorcontrib><creatorcontrib>Hays-Wehle, J.</creatorcontrib><creatorcontrib>Heinitz, S.</creatorcontrib><creatorcontrib>Hilton, G.</creatorcontrib><creatorcontrib>Köster, U.</creatorcontrib><creatorcontrib>Lusignoli, M.</creatorcontrib><creatorcontrib>Mates, J.</creatorcontrib><creatorcontrib>Nisi, S.</creatorcontrib><creatorcontrib>Orlando, A.</creatorcontrib><creatorcontrib>Parodi, L.</creatorcontrib><creatorcontrib>Pessina, G.</creatorcontrib><creatorcontrib>Puiu, A.</creatorcontrib><creatorcontrib>Ragazzi, S.</creatorcontrib><creatorcontrib>Reintsema, C.</creatorcontrib><creatorcontrib>Ribeiro-Gomez, M.</creatorcontrib><creatorcontrib>Schmidt, D.</creatorcontrib><creatorcontrib>Schuman, D.</creatorcontrib><creatorcontrib>Siccardi, F.</creatorcontrib><creatorcontrib>Swetz, D.</creatorcontrib><creatorcontrib>Ullom, J.</creatorcontrib><creatorcontrib>Vale, L.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>J.Low Temp.Phys</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nucciotti, A.</au><au>Alpert, B.</au><au>Balata, M.</au><au>Becker, D.</au><au>Bennett, D.</au><au>Bevilacqua, A.</au><au>Biasotti, M.</au><au>Ceriale, V.</au><au>Ceruti, G.</au><au>Corsini, D.</au><au>De Gerone, M.</au><au>Dressler, R.</au><au>Faverzani, M.</au><au>Ferri, E.</au><au>Fowler, J.</au><au>Gallucci, G.</au><au>Gard, J.</au><au>Gatti, F.</au><au>Giachero, A.</au><au>Hays-Wehle, J.</au><au>Heinitz, S.</au><au>Hilton, G.</au><au>Köster, U.</au><au>Lusignoli, M.</au><au>Mates, J.</au><au>Nisi, S.</au><au>Orlando, A.</au><au>Parodi, L.</au><au>Pessina, G.</au><au>Puiu, A.</au><au>Ragazzi, S.</au><au>Reintsema, C.</au><au>Ribeiro-Gomez, M.</au><au>Schmidt, D.</au><au>Schuman, D.</au><au>Siccardi, F.</au><au>Swetz, D.</au><au>Ullom, J.</au><au>Vale, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Status of the HOLMES Experiment to Directly Measure the Neutrino Mass</atitle><jtitle>J.Low Temp.Phys</jtitle><stitle>J Low Temp Phys</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>193</volume><issue>5-6</issue><spage>1137</spage><epage>1145</epage><pages>1137-1145</pages><issn>0022-2291</issn><eissn>1573-7357</eissn><abstract>The assessment of neutrino absolute mass scale is still a crucial challenge in today particle physics and cosmology. Beta or electron capture spectrum end-point study is currently the only experimental method which can provide a model-independent measurement of the absolute scale of neutrino mass. HOLMES is an experiment funded by the European Research Council to directly measure the neutrino mass. HOLMES will perform a calorimetric measurement of the energy released in the electron capture decay of the artificial isotope 163 Ho. In a calorimetric measurement, the energy released in the decay process is entirely contained into the detector, except for the fraction taken away by the neutrino. This approach eliminates both the issues related to the use of an external source and the systematic uncertainties arising from decays on excited final states. The most suitable detectors for this type of measurement are low-temperature thermal detectors, where all the energy released into an absorber is converted into a temperature increase that can be measured by a sensitive thermometer directly coupled with the absorber. This measurement was originally proposed by De Rujula and Lusignoli (Nucl Phys B 219:277, 1983 . https://doi.org/10.1016/0550-3213(83)90642-9 ), but only in the last decade the technological progress in detectors development has allowed to design a sensitive experiment. HOLMES plans to deploy a large array of low-temperature microcalorimeters with implanted 163 Ho nuclei. In this contribution we outline the HOLMES project with its physics reach and technical challenges, along with its status and perspectives.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10909-018-2025-x</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8458-1556</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2291
ispartof J.Low Temp.Phys, 2018-12, Vol.193 (5-6), p.1137-1145
issn 0022-2291
1573-7357
language eng
recordid cdi_proquest_journals_2136592701
source SpringerLink Journals - AutoHoldings
subjects Absorbers
Beta decay
Beta rays
Calorimeters
Characterization and Evaluation of Materials
Condensed Matter Physics
Cosmology
Detectors
Electron capture
Energy measurement
Experiments
Heat measurement
High Energy Physics - Experiment
Instrumentation and Detectors
Low temperature physics
Magnetic Materials
Magnetism
Neutrinos
Nuclear Experiment
Particle physics
Physics
Physics and Astronomy
Sensors
title Status of the HOLMES Experiment to Directly Measure the Neutrino Mass
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A52%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Status%20of%20the%20HOLMES%20Experiment%20to%20Directly%20Measure%20the%20Neutrino%20Mass&rft.jtitle=J.Low%20Temp.Phys&rft.au=Nucciotti,%20A.&rft.date=2018-12-01&rft.volume=193&rft.issue=5-6&rft.spage=1137&rft.epage=1145&rft.pages=1137-1145&rft.issn=0022-2291&rft.eissn=1573-7357&rft_id=info:doi/10.1007/s10909-018-2025-x&rft_dat=%3Cproquest_hal_p%3E2136592701%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2136592701&rft_id=info:pmid/&rfr_iscdi=true