Status of the HOLMES Experiment to Directly Measure the Neutrino Mass
The assessment of neutrino absolute mass scale is still a crucial challenge in today particle physics and cosmology. Beta or electron capture spectrum end-point study is currently the only experimental method which can provide a model-independent measurement of the absolute scale of neutrino mass. H...
Gespeichert in:
Veröffentlicht in: | J.Low Temp.Phys 2018-12, Vol.193 (5-6), p.1137-1145 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1145 |
---|---|
container_issue | 5-6 |
container_start_page | 1137 |
container_title | J.Low Temp.Phys |
container_volume | 193 |
creator | Nucciotti, A. Alpert, B. Balata, M. Becker, D. Bennett, D. Bevilacqua, A. Biasotti, M. Ceriale, V. Ceruti, G. Corsini, D. De Gerone, M. Dressler, R. Faverzani, M. Ferri, E. Fowler, J. Gallucci, G. Gard, J. Gatti, F. Giachero, A. Hays-Wehle, J. Heinitz, S. Hilton, G. Köster, U. Lusignoli, M. Mates, J. Nisi, S. Orlando, A. Parodi, L. Pessina, G. Puiu, A. Ragazzi, S. Reintsema, C. Ribeiro-Gomez, M. Schmidt, D. Schuman, D. Siccardi, F. Swetz, D. Ullom, J. Vale, L. |
description | The assessment of neutrino absolute mass scale is still a crucial challenge in today particle physics and cosmology. Beta or electron capture spectrum end-point study is currently the only experimental method which can provide a model-independent measurement of the absolute scale of neutrino mass. HOLMES is an experiment funded by the European Research Council to directly measure the neutrino mass. HOLMES will perform a calorimetric measurement of the energy released in the electron capture decay of the artificial isotope
163
Ho. In a calorimetric measurement, the energy released in the decay process is entirely contained into the detector, except for the fraction taken away by the neutrino. This approach eliminates both the issues related to the use of an external source and the systematic uncertainties arising from decays on excited final states. The most suitable detectors for this type of measurement are low-temperature thermal detectors, where all the energy released into an absorber is converted into a temperature increase that can be measured by a sensitive thermometer directly coupled with the absorber. This measurement was originally proposed by De Rujula and Lusignoli (Nucl Phys B 219:277,
1983
.
https://doi.org/10.1016/0550-3213(83)90642-9
), but only in the last decade the technological progress in detectors development has allowed to design a sensitive experiment. HOLMES plans to deploy a large array of low-temperature microcalorimeters with implanted
163
Ho nuclei. In this contribution we outline the HOLMES project with its physics reach and technical challenges, along with its status and perspectives. |
doi_str_mv | 10.1007/s10909-018-2025-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_journals_2136592701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2136592701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-ac43924ae7c99ba633526c856b6b0efd03878acc6beb72a5d2a1c81a6c78e3ab3</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EEqXwAGyWmBgMZzux47GCQpFSOhRmy3EdmqokxXZQ-_YkBMHEdNLp-z_d_QhdUrihAPI2UFCgCNCMMGAp2R-hEU0lJ5Kn8hiNABgjjCl6is5C2ACAygQfoekymtgG3JQ4rh2eLfL5dImn-53z1burI44Nvq-8s3F7wHNnQuvdN_ns2uirusFzE8I5OinNNriLnzlGrw_Tl7sZyRePT3eTnNiEikiMTbhiiXHSKlUYwXnKhM1SUYgCXLkCnsnMWCsKV0hm0hUz1GbUCCszx03Bx-h68K7NVu-6C40_6MZUejbJdb_r_hdUJeqTduzVwO5889G6EPWmaX3dnacZ5SJVTEJP0YGyvgnBu_JXS0H3zeqh2d6s-2b1vsuwIRM6tn5z_s_8f-gL7yJ6RQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2136592701</pqid></control><display><type>article</type><title>Status of the HOLMES Experiment to Directly Measure the Neutrino Mass</title><source>SpringerLink Journals - AutoHoldings</source><creator>Nucciotti, A. ; Alpert, B. ; Balata, M. ; Becker, D. ; Bennett, D. ; Bevilacqua, A. ; Biasotti, M. ; Ceriale, V. ; Ceruti, G. ; Corsini, D. ; De Gerone, M. ; Dressler, R. ; Faverzani, M. ; Ferri, E. ; Fowler, J. ; Gallucci, G. ; Gard, J. ; Gatti, F. ; Giachero, A. ; Hays-Wehle, J. ; Heinitz, S. ; Hilton, G. ; Köster, U. ; Lusignoli, M. ; Mates, J. ; Nisi, S. ; Orlando, A. ; Parodi, L. ; Pessina, G. ; Puiu, A. ; Ragazzi, S. ; Reintsema, C. ; Ribeiro-Gomez, M. ; Schmidt, D. ; Schuman, D. ; Siccardi, F. ; Swetz, D. ; Ullom, J. ; Vale, L.</creator><creatorcontrib>Nucciotti, A. ; Alpert, B. ; Balata, M. ; Becker, D. ; Bennett, D. ; Bevilacqua, A. ; Biasotti, M. ; Ceriale, V. ; Ceruti, G. ; Corsini, D. ; De Gerone, M. ; Dressler, R. ; Faverzani, M. ; Ferri, E. ; Fowler, J. ; Gallucci, G. ; Gard, J. ; Gatti, F. ; Giachero, A. ; Hays-Wehle, J. ; Heinitz, S. ; Hilton, G. ; Köster, U. ; Lusignoli, M. ; Mates, J. ; Nisi, S. ; Orlando, A. ; Parodi, L. ; Pessina, G. ; Puiu, A. ; Ragazzi, S. ; Reintsema, C. ; Ribeiro-Gomez, M. ; Schmidt, D. ; Schuman, D. ; Siccardi, F. ; Swetz, D. ; Ullom, J. ; Vale, L.</creatorcontrib><description>The assessment of neutrino absolute mass scale is still a crucial challenge in today particle physics and cosmology. Beta or electron capture spectrum end-point study is currently the only experimental method which can provide a model-independent measurement of the absolute scale of neutrino mass. HOLMES is an experiment funded by the European Research Council to directly measure the neutrino mass. HOLMES will perform a calorimetric measurement of the energy released in the electron capture decay of the artificial isotope
163
Ho. In a calorimetric measurement, the energy released in the decay process is entirely contained into the detector, except for the fraction taken away by the neutrino. This approach eliminates both the issues related to the use of an external source and the systematic uncertainties arising from decays on excited final states. The most suitable detectors for this type of measurement are low-temperature thermal detectors, where all the energy released into an absorber is converted into a temperature increase that can be measured by a sensitive thermometer directly coupled with the absorber. This measurement was originally proposed by De Rujula and Lusignoli (Nucl Phys B 219:277,
1983
.
https://doi.org/10.1016/0550-3213(83)90642-9
), but only in the last decade the technological progress in detectors development has allowed to design a sensitive experiment. HOLMES plans to deploy a large array of low-temperature microcalorimeters with implanted
163
Ho nuclei. In this contribution we outline the HOLMES project with its physics reach and technical challenges, along with its status and perspectives.</description><identifier>ISSN: 0022-2291</identifier><identifier>EISSN: 1573-7357</identifier><identifier>DOI: 10.1007/s10909-018-2025-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Absorbers ; Beta decay ; Beta rays ; Calorimeters ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; Cosmology ; Detectors ; Electron capture ; Energy measurement ; Experiments ; Heat measurement ; High Energy Physics - Experiment ; Instrumentation and Detectors ; Low temperature physics ; Magnetic Materials ; Magnetism ; Neutrinos ; Nuclear Experiment ; Particle physics ; Physics ; Physics and Astronomy ; Sensors</subject><ispartof>J.Low Temp.Phys, 2018-12, Vol.193 (5-6), p.1137-1145</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-ac43924ae7c99ba633526c856b6b0efd03878acc6beb72a5d2a1c81a6c78e3ab3</citedby><cites>FETCH-LOGICAL-c416t-ac43924ae7c99ba633526c856b6b0efd03878acc6beb72a5d2a1c81a6c78e3ab3</cites><orcidid>0000-0002-8458-1556</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10909-018-2025-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10909-018-2025-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01861949$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Nucciotti, A.</creatorcontrib><creatorcontrib>Alpert, B.</creatorcontrib><creatorcontrib>Balata, M.</creatorcontrib><creatorcontrib>Becker, D.</creatorcontrib><creatorcontrib>Bennett, D.</creatorcontrib><creatorcontrib>Bevilacqua, A.</creatorcontrib><creatorcontrib>Biasotti, M.</creatorcontrib><creatorcontrib>Ceriale, V.</creatorcontrib><creatorcontrib>Ceruti, G.</creatorcontrib><creatorcontrib>Corsini, D.</creatorcontrib><creatorcontrib>De Gerone, M.</creatorcontrib><creatorcontrib>Dressler, R.</creatorcontrib><creatorcontrib>Faverzani, M.</creatorcontrib><creatorcontrib>Ferri, E.</creatorcontrib><creatorcontrib>Fowler, J.</creatorcontrib><creatorcontrib>Gallucci, G.</creatorcontrib><creatorcontrib>Gard, J.</creatorcontrib><creatorcontrib>Gatti, F.</creatorcontrib><creatorcontrib>Giachero, A.</creatorcontrib><creatorcontrib>Hays-Wehle, J.</creatorcontrib><creatorcontrib>Heinitz, S.</creatorcontrib><creatorcontrib>Hilton, G.</creatorcontrib><creatorcontrib>Köster, U.</creatorcontrib><creatorcontrib>Lusignoli, M.</creatorcontrib><creatorcontrib>Mates, J.</creatorcontrib><creatorcontrib>Nisi, S.</creatorcontrib><creatorcontrib>Orlando, A.</creatorcontrib><creatorcontrib>Parodi, L.</creatorcontrib><creatorcontrib>Pessina, G.</creatorcontrib><creatorcontrib>Puiu, A.</creatorcontrib><creatorcontrib>Ragazzi, S.</creatorcontrib><creatorcontrib>Reintsema, C.</creatorcontrib><creatorcontrib>Ribeiro-Gomez, M.</creatorcontrib><creatorcontrib>Schmidt, D.</creatorcontrib><creatorcontrib>Schuman, D.</creatorcontrib><creatorcontrib>Siccardi, F.</creatorcontrib><creatorcontrib>Swetz, D.</creatorcontrib><creatorcontrib>Ullom, J.</creatorcontrib><creatorcontrib>Vale, L.</creatorcontrib><title>Status of the HOLMES Experiment to Directly Measure the Neutrino Mass</title><title>J.Low Temp.Phys</title><addtitle>J Low Temp Phys</addtitle><description>The assessment of neutrino absolute mass scale is still a crucial challenge in today particle physics and cosmology. Beta or electron capture spectrum end-point study is currently the only experimental method which can provide a model-independent measurement of the absolute scale of neutrino mass. HOLMES is an experiment funded by the European Research Council to directly measure the neutrino mass. HOLMES will perform a calorimetric measurement of the energy released in the electron capture decay of the artificial isotope
163
Ho. In a calorimetric measurement, the energy released in the decay process is entirely contained into the detector, except for the fraction taken away by the neutrino. This approach eliminates both the issues related to the use of an external source and the systematic uncertainties arising from decays on excited final states. The most suitable detectors for this type of measurement are low-temperature thermal detectors, where all the energy released into an absorber is converted into a temperature increase that can be measured by a sensitive thermometer directly coupled with the absorber. This measurement was originally proposed by De Rujula and Lusignoli (Nucl Phys B 219:277,
1983
.
https://doi.org/10.1016/0550-3213(83)90642-9
), but only in the last decade the technological progress in detectors development has allowed to design a sensitive experiment. HOLMES plans to deploy a large array of low-temperature microcalorimeters with implanted
163
Ho nuclei. In this contribution we outline the HOLMES project with its physics reach and technical challenges, along with its status and perspectives.</description><subject>Absorbers</subject><subject>Beta decay</subject><subject>Beta rays</subject><subject>Calorimeters</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Cosmology</subject><subject>Detectors</subject><subject>Electron capture</subject><subject>Energy measurement</subject><subject>Experiments</subject><subject>Heat measurement</subject><subject>High Energy Physics - Experiment</subject><subject>Instrumentation and Detectors</subject><subject>Low temperature physics</subject><subject>Magnetic Materials</subject><subject>Magnetism</subject><subject>Neutrinos</subject><subject>Nuclear Experiment</subject><subject>Particle physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Sensors</subject><issn>0022-2291</issn><issn>1573-7357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAQhi0EEqXwAGyWmBgMZzux47GCQpFSOhRmy3EdmqokxXZQ-_YkBMHEdNLp-z_d_QhdUrihAPI2UFCgCNCMMGAp2R-hEU0lJ5Kn8hiNABgjjCl6is5C2ACAygQfoekymtgG3JQ4rh2eLfL5dImn-53z1burI44Nvq-8s3F7wHNnQuvdN_ns2uirusFzE8I5OinNNriLnzlGrw_Tl7sZyRePT3eTnNiEikiMTbhiiXHSKlUYwXnKhM1SUYgCXLkCnsnMWCsKV0hm0hUz1GbUCCszx03Bx-h68K7NVu-6C40_6MZUejbJdb_r_hdUJeqTduzVwO5889G6EPWmaX3dnacZ5SJVTEJP0YGyvgnBu_JXS0H3zeqh2d6s-2b1vsuwIRM6tn5z_s_8f-gL7yJ6RQ</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Nucciotti, A.</creator><creator>Alpert, B.</creator><creator>Balata, M.</creator><creator>Becker, D.</creator><creator>Bennett, D.</creator><creator>Bevilacqua, A.</creator><creator>Biasotti, M.</creator><creator>Ceriale, V.</creator><creator>Ceruti, G.</creator><creator>Corsini, D.</creator><creator>De Gerone, M.</creator><creator>Dressler, R.</creator><creator>Faverzani, M.</creator><creator>Ferri, E.</creator><creator>Fowler, J.</creator><creator>Gallucci, G.</creator><creator>Gard, J.</creator><creator>Gatti, F.</creator><creator>Giachero, A.</creator><creator>Hays-Wehle, J.</creator><creator>Heinitz, S.</creator><creator>Hilton, G.</creator><creator>Köster, U.</creator><creator>Lusignoli, M.</creator><creator>Mates, J.</creator><creator>Nisi, S.</creator><creator>Orlando, A.</creator><creator>Parodi, L.</creator><creator>Pessina, G.</creator><creator>Puiu, A.</creator><creator>Ragazzi, S.</creator><creator>Reintsema, C.</creator><creator>Ribeiro-Gomez, M.</creator><creator>Schmidt, D.</creator><creator>Schuman, D.</creator><creator>Siccardi, F.</creator><creator>Swetz, D.</creator><creator>Ullom, J.</creator><creator>Vale, L.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8458-1556</orcidid></search><sort><creationdate>20181201</creationdate><title>Status of the HOLMES Experiment to Directly Measure the Neutrino Mass</title><author>Nucciotti, A. ; Alpert, B. ; Balata, M. ; Becker, D. ; Bennett, D. ; Bevilacqua, A. ; Biasotti, M. ; Ceriale, V. ; Ceruti, G. ; Corsini, D. ; De Gerone, M. ; Dressler, R. ; Faverzani, M. ; Ferri, E. ; Fowler, J. ; Gallucci, G. ; Gard, J. ; Gatti, F. ; Giachero, A. ; Hays-Wehle, J. ; Heinitz, S. ; Hilton, G. ; Köster, U. ; Lusignoli, M. ; Mates, J. ; Nisi, S. ; Orlando, A. ; Parodi, L. ; Pessina, G. ; Puiu, A. ; Ragazzi, S. ; Reintsema, C. ; Ribeiro-Gomez, M. ; Schmidt, D. ; Schuman, D. ; Siccardi, F. ; Swetz, D. ; Ullom, J. ; Vale, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-ac43924ae7c99ba633526c856b6b0efd03878acc6beb72a5d2a1c81a6c78e3ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Absorbers</topic><topic>Beta decay</topic><topic>Beta rays</topic><topic>Calorimeters</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Cosmology</topic><topic>Detectors</topic><topic>Electron capture</topic><topic>Energy measurement</topic><topic>Experiments</topic><topic>Heat measurement</topic><topic>High Energy Physics - Experiment</topic><topic>Instrumentation and Detectors</topic><topic>Low temperature physics</topic><topic>Magnetic Materials</topic><topic>Magnetism</topic><topic>Neutrinos</topic><topic>Nuclear Experiment</topic><topic>Particle physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nucciotti, A.</creatorcontrib><creatorcontrib>Alpert, B.</creatorcontrib><creatorcontrib>Balata, M.</creatorcontrib><creatorcontrib>Becker, D.</creatorcontrib><creatorcontrib>Bennett, D.</creatorcontrib><creatorcontrib>Bevilacqua, A.</creatorcontrib><creatorcontrib>Biasotti, M.</creatorcontrib><creatorcontrib>Ceriale, V.</creatorcontrib><creatorcontrib>Ceruti, G.</creatorcontrib><creatorcontrib>Corsini, D.</creatorcontrib><creatorcontrib>De Gerone, M.</creatorcontrib><creatorcontrib>Dressler, R.</creatorcontrib><creatorcontrib>Faverzani, M.</creatorcontrib><creatorcontrib>Ferri, E.</creatorcontrib><creatorcontrib>Fowler, J.</creatorcontrib><creatorcontrib>Gallucci, G.</creatorcontrib><creatorcontrib>Gard, J.</creatorcontrib><creatorcontrib>Gatti, F.</creatorcontrib><creatorcontrib>Giachero, A.</creatorcontrib><creatorcontrib>Hays-Wehle, J.</creatorcontrib><creatorcontrib>Heinitz, S.</creatorcontrib><creatorcontrib>Hilton, G.</creatorcontrib><creatorcontrib>Köster, U.</creatorcontrib><creatorcontrib>Lusignoli, M.</creatorcontrib><creatorcontrib>Mates, J.</creatorcontrib><creatorcontrib>Nisi, S.</creatorcontrib><creatorcontrib>Orlando, A.</creatorcontrib><creatorcontrib>Parodi, L.</creatorcontrib><creatorcontrib>Pessina, G.</creatorcontrib><creatorcontrib>Puiu, A.</creatorcontrib><creatorcontrib>Ragazzi, S.</creatorcontrib><creatorcontrib>Reintsema, C.</creatorcontrib><creatorcontrib>Ribeiro-Gomez, M.</creatorcontrib><creatorcontrib>Schmidt, D.</creatorcontrib><creatorcontrib>Schuman, D.</creatorcontrib><creatorcontrib>Siccardi, F.</creatorcontrib><creatorcontrib>Swetz, D.</creatorcontrib><creatorcontrib>Ullom, J.</creatorcontrib><creatorcontrib>Vale, L.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>J.Low Temp.Phys</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nucciotti, A.</au><au>Alpert, B.</au><au>Balata, M.</au><au>Becker, D.</au><au>Bennett, D.</au><au>Bevilacqua, A.</au><au>Biasotti, M.</au><au>Ceriale, V.</au><au>Ceruti, G.</au><au>Corsini, D.</au><au>De Gerone, M.</au><au>Dressler, R.</au><au>Faverzani, M.</au><au>Ferri, E.</au><au>Fowler, J.</au><au>Gallucci, G.</au><au>Gard, J.</au><au>Gatti, F.</au><au>Giachero, A.</au><au>Hays-Wehle, J.</au><au>Heinitz, S.</au><au>Hilton, G.</au><au>Köster, U.</au><au>Lusignoli, M.</au><au>Mates, J.</au><au>Nisi, S.</au><au>Orlando, A.</au><au>Parodi, L.</au><au>Pessina, G.</au><au>Puiu, A.</au><au>Ragazzi, S.</au><au>Reintsema, C.</au><au>Ribeiro-Gomez, M.</au><au>Schmidt, D.</au><au>Schuman, D.</au><au>Siccardi, F.</au><au>Swetz, D.</au><au>Ullom, J.</au><au>Vale, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Status of the HOLMES Experiment to Directly Measure the Neutrino Mass</atitle><jtitle>J.Low Temp.Phys</jtitle><stitle>J Low Temp Phys</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>193</volume><issue>5-6</issue><spage>1137</spage><epage>1145</epage><pages>1137-1145</pages><issn>0022-2291</issn><eissn>1573-7357</eissn><abstract>The assessment of neutrino absolute mass scale is still a crucial challenge in today particle physics and cosmology. Beta or electron capture spectrum end-point study is currently the only experimental method which can provide a model-independent measurement of the absolute scale of neutrino mass. HOLMES is an experiment funded by the European Research Council to directly measure the neutrino mass. HOLMES will perform a calorimetric measurement of the energy released in the electron capture decay of the artificial isotope
163
Ho. In a calorimetric measurement, the energy released in the decay process is entirely contained into the detector, except for the fraction taken away by the neutrino. This approach eliminates both the issues related to the use of an external source and the systematic uncertainties arising from decays on excited final states. The most suitable detectors for this type of measurement are low-temperature thermal detectors, where all the energy released into an absorber is converted into a temperature increase that can be measured by a sensitive thermometer directly coupled with the absorber. This measurement was originally proposed by De Rujula and Lusignoli (Nucl Phys B 219:277,
1983
.
https://doi.org/10.1016/0550-3213(83)90642-9
), but only in the last decade the technological progress in detectors development has allowed to design a sensitive experiment. HOLMES plans to deploy a large array of low-temperature microcalorimeters with implanted
163
Ho nuclei. In this contribution we outline the HOLMES project with its physics reach and technical challenges, along with its status and perspectives.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10909-018-2025-x</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8458-1556</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2291 |
ispartof | J.Low Temp.Phys, 2018-12, Vol.193 (5-6), p.1137-1145 |
issn | 0022-2291 1573-7357 |
language | eng |
recordid | cdi_proquest_journals_2136592701 |
source | SpringerLink Journals - AutoHoldings |
subjects | Absorbers Beta decay Beta rays Calorimeters Characterization and Evaluation of Materials Condensed Matter Physics Cosmology Detectors Electron capture Energy measurement Experiments Heat measurement High Energy Physics - Experiment Instrumentation and Detectors Low temperature physics Magnetic Materials Magnetism Neutrinos Nuclear Experiment Particle physics Physics Physics and Astronomy Sensors |
title | Status of the HOLMES Experiment to Directly Measure the Neutrino Mass |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A52%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Status%20of%20the%20HOLMES%20Experiment%20to%20Directly%20Measure%20the%20Neutrino%20Mass&rft.jtitle=J.Low%20Temp.Phys&rft.au=Nucciotti,%20A.&rft.date=2018-12-01&rft.volume=193&rft.issue=5-6&rft.spage=1137&rft.epage=1145&rft.pages=1137-1145&rft.issn=0022-2291&rft.eissn=1573-7357&rft_id=info:doi/10.1007/s10909-018-2025-x&rft_dat=%3Cproquest_hal_p%3E2136592701%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2136592701&rft_id=info:pmid/&rfr_iscdi=true |