Electromagnetic Design of a Magnetically Coupled Spatial Power Combiner
The design of a two-dimensional spatial beam-combining network employing a parallel-plate superconducting waveguide filled with a monocrystalline silicon dielectric substrate is presented. This component uses arrays of magnetically coupled antenna elements to achieve high coupling efficiency and ful...
Gespeichert in:
Veröffentlicht in: | Journal of low temperature physics 2018-12, Vol.193 (5-6), p.777-785 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 785 |
---|---|
container_issue | 5-6 |
container_start_page | 777 |
container_title | Journal of low temperature physics |
container_volume | 193 |
creator | Bulcha, B. T. Cataldo, G. Stevenson, T. R. U-Yen, K. Moseley, S. H. Wollack, E. J. |
description | The design of a two-dimensional spatial beam-combining network employing a parallel-plate superconducting waveguide filled with a monocrystalline silicon dielectric substrate is presented. This component uses arrays of magnetically coupled antenna elements to achieve high coupling efficiency and full sampling of the intensity distribution while avoiding diffractive losses in the multimode waveguide region. These attributes enable the structure’s use in realizing compact far-infrared spectrometers for astrophysical and instrumentation applications. If unterminated, reflections within a finite-sized spatial beam combiner can potentially lead to spurious couplings between elements. A planar meta-material electromagnetic absorber is implemented to control this response within the device. This broadband termination absorbs greater than 0.99 of the power over the 1.7:1 operational band at angles ranging from normal to near-parallel incidence. The design approach, simulations and applications of the spatial power combiner and meta-material termination structure are presented. |
doi_str_mv | 10.1007/s10909-018-1923-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2136592681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2136592681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-b6898dee186d2b2032b35686e40b6ebca6abe5d23e7312cbd59b1bf5202413e53</originalsourceid><addsrcrecordid>eNp1kFFLwzAUhYMoOKc_wLeCz9HcmyVtHmXOKUwU1OeQtLejo2tr0iH79-vowCefLhzOdy58jN2CuAch0ocIwgjDBWQcDEqOZ2wCKpU8lSo9ZxMhEDmigUt2FeNGCGEyLSdsuagp70O7deuG-ipPnihW6yZpy8Qlb6fQ1fU-mbe7rqYi-excX7k6-Wh_KQzp1lcNhWt2Ubo60s3pTtn38-Jr_sJX78vX-eOK5xJ0z73OTFYQQaYL9Cgkeql0pmkmvCafO-08qQIlpRIw94UyHnypUOAMJCk5ZXfjbhfanx3F3m7aXWiGlxZBamVQZzC0YGzloY0xUGm7UG1d2FsQ9ujLjr7s4MsefVkcGByZOHSbNYW_5f-hA_nYbMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2136592681</pqid></control><display><type>article</type><title>Electromagnetic Design of a Magnetically Coupled Spatial Power Combiner</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bulcha, B. T. ; Cataldo, G. ; Stevenson, T. R. ; U-Yen, K. ; Moseley, S. H. ; Wollack, E. J.</creator><creatorcontrib>Bulcha, B. T. ; Cataldo, G. ; Stevenson, T. R. ; U-Yen, K. ; Moseley, S. H. ; Wollack, E. J.</creatorcontrib><description>The design of a two-dimensional spatial beam-combining network employing a parallel-plate superconducting waveguide filled with a monocrystalline silicon dielectric substrate is presented. This component uses arrays of magnetically coupled antenna elements to achieve high coupling efficiency and full sampling of the intensity distribution while avoiding diffractive losses in the multimode waveguide region. These attributes enable the structure’s use in realizing compact far-infrared spectrometers for astrophysical and instrumentation applications. If unterminated, reflections within a finite-sized spatial beam combiner can potentially lead to spurious couplings between elements. A planar meta-material electromagnetic absorber is implemented to control this response within the device. This broadband termination absorbs greater than 0.99 of the power over the 1.7:1 operational band at angles ranging from normal to near-parallel incidence. The design approach, simulations and applications of the spatial power combiner and meta-material termination structure are presented.</description><identifier>ISSN: 0022-2291</identifier><identifier>EISSN: 1573-7357</identifier><identifier>DOI: 10.1007/s10909-018-1923-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Antenna arrays ; Broadband ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; Couplings ; Far infrared radiation ; Incidence angle ; Infrared spectrometers ; Low temperature physics ; Magnetic Materials ; Magnetism ; Metamaterials ; Physics ; Physics and Astronomy ; Plates (structural members) ; Power combiners ; Silicon substrates ; Spectrometers</subject><ispartof>Journal of low temperature physics, 2018-12, Vol.193 (5-6), p.777-785</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-b6898dee186d2b2032b35686e40b6ebca6abe5d23e7312cbd59b1bf5202413e53</citedby><cites>FETCH-LOGICAL-c316t-b6898dee186d2b2032b35686e40b6ebca6abe5d23e7312cbd59b1bf5202413e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10909-018-1923-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10909-018-1923-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Bulcha, B. T.</creatorcontrib><creatorcontrib>Cataldo, G.</creatorcontrib><creatorcontrib>Stevenson, T. R.</creatorcontrib><creatorcontrib>U-Yen, K.</creatorcontrib><creatorcontrib>Moseley, S. H.</creatorcontrib><creatorcontrib>Wollack, E. J.</creatorcontrib><title>Electromagnetic Design of a Magnetically Coupled Spatial Power Combiner</title><title>Journal of low temperature physics</title><addtitle>J Low Temp Phys</addtitle><description>The design of a two-dimensional spatial beam-combining network employing a parallel-plate superconducting waveguide filled with a monocrystalline silicon dielectric substrate is presented. This component uses arrays of magnetically coupled antenna elements to achieve high coupling efficiency and full sampling of the intensity distribution while avoiding diffractive losses in the multimode waveguide region. These attributes enable the structure’s use in realizing compact far-infrared spectrometers for astrophysical and instrumentation applications. If unterminated, reflections within a finite-sized spatial beam combiner can potentially lead to spurious couplings between elements. A planar meta-material electromagnetic absorber is implemented to control this response within the device. This broadband termination absorbs greater than 0.99 of the power over the 1.7:1 operational band at angles ranging from normal to near-parallel incidence. The design approach, simulations and applications of the spatial power combiner and meta-material termination structure are presented.</description><subject>Antenna arrays</subject><subject>Broadband</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Couplings</subject><subject>Far infrared radiation</subject><subject>Incidence angle</subject><subject>Infrared spectrometers</subject><subject>Low temperature physics</subject><subject>Magnetic Materials</subject><subject>Magnetism</subject><subject>Metamaterials</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Plates (structural members)</subject><subject>Power combiners</subject><subject>Silicon substrates</subject><subject>Spectrometers</subject><issn>0022-2291</issn><issn>1573-7357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kFFLwzAUhYMoOKc_wLeCz9HcmyVtHmXOKUwU1OeQtLejo2tr0iH79-vowCefLhzOdy58jN2CuAch0ocIwgjDBWQcDEqOZ2wCKpU8lSo9ZxMhEDmigUt2FeNGCGEyLSdsuagp70O7deuG-ipPnihW6yZpy8Qlb6fQ1fU-mbe7rqYi-excX7k6-Wh_KQzp1lcNhWt2Ubo60s3pTtn38-Jr_sJX78vX-eOK5xJ0z73OTFYQQaYL9Cgkeql0pmkmvCafO-08qQIlpRIw94UyHnypUOAMJCk5ZXfjbhfanx3F3m7aXWiGlxZBamVQZzC0YGzloY0xUGm7UG1d2FsQ9ujLjr7s4MsefVkcGByZOHSbNYW_5f-hA_nYbMQ</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Bulcha, B. T.</creator><creator>Cataldo, G.</creator><creator>Stevenson, T. R.</creator><creator>U-Yen, K.</creator><creator>Moseley, S. H.</creator><creator>Wollack, E. J.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181201</creationdate><title>Electromagnetic Design of a Magnetically Coupled Spatial Power Combiner</title><author>Bulcha, B. T. ; Cataldo, G. ; Stevenson, T. R. ; U-Yen, K. ; Moseley, S. H. ; Wollack, E. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-b6898dee186d2b2032b35686e40b6ebca6abe5d23e7312cbd59b1bf5202413e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Antenna arrays</topic><topic>Broadband</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Couplings</topic><topic>Far infrared radiation</topic><topic>Incidence angle</topic><topic>Infrared spectrometers</topic><topic>Low temperature physics</topic><topic>Magnetic Materials</topic><topic>Magnetism</topic><topic>Metamaterials</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Plates (structural members)</topic><topic>Power combiners</topic><topic>Silicon substrates</topic><topic>Spectrometers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bulcha, B. T.</creatorcontrib><creatorcontrib>Cataldo, G.</creatorcontrib><creatorcontrib>Stevenson, T. R.</creatorcontrib><creatorcontrib>U-Yen, K.</creatorcontrib><creatorcontrib>Moseley, S. H.</creatorcontrib><creatorcontrib>Wollack, E. J.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of low temperature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bulcha, B. T.</au><au>Cataldo, G.</au><au>Stevenson, T. R.</au><au>U-Yen, K.</au><au>Moseley, S. H.</au><au>Wollack, E. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electromagnetic Design of a Magnetically Coupled Spatial Power Combiner</atitle><jtitle>Journal of low temperature physics</jtitle><stitle>J Low Temp Phys</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>193</volume><issue>5-6</issue><spage>777</spage><epage>785</epage><pages>777-785</pages><issn>0022-2291</issn><eissn>1573-7357</eissn><abstract>The design of a two-dimensional spatial beam-combining network employing a parallel-plate superconducting waveguide filled with a monocrystalline silicon dielectric substrate is presented. This component uses arrays of magnetically coupled antenna elements to achieve high coupling efficiency and full sampling of the intensity distribution while avoiding diffractive losses in the multimode waveguide region. These attributes enable the structure’s use in realizing compact far-infrared spectrometers for astrophysical and instrumentation applications. If unterminated, reflections within a finite-sized spatial beam combiner can potentially lead to spurious couplings between elements. A planar meta-material electromagnetic absorber is implemented to control this response within the device. This broadband termination absorbs greater than 0.99 of the power over the 1.7:1 operational band at angles ranging from normal to near-parallel incidence. The design approach, simulations and applications of the spatial power combiner and meta-material termination structure are presented.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10909-018-1923-2</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2291 |
ispartof | Journal of low temperature physics, 2018-12, Vol.193 (5-6), p.777-785 |
issn | 0022-2291 1573-7357 |
language | eng |
recordid | cdi_proquest_journals_2136592681 |
source | SpringerLink Journals - AutoHoldings |
subjects | Antenna arrays Broadband Characterization and Evaluation of Materials Condensed Matter Physics Couplings Far infrared radiation Incidence angle Infrared spectrometers Low temperature physics Magnetic Materials Magnetism Metamaterials Physics Physics and Astronomy Plates (structural members) Power combiners Silicon substrates Spectrometers |
title | Electromagnetic Design of a Magnetically Coupled Spatial Power Combiner |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T09%3A11%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electromagnetic%20Design%20of%20a%20Magnetically%20Coupled%20Spatial%20Power%20Combiner&rft.jtitle=Journal%20of%20low%20temperature%20physics&rft.au=Bulcha,%20B.%20T.&rft.date=2018-12-01&rft.volume=193&rft.issue=5-6&rft.spage=777&rft.epage=785&rft.pages=777-785&rft.issn=0022-2291&rft.eissn=1573-7357&rft_id=info:doi/10.1007/s10909-018-1923-2&rft_dat=%3Cproquest_cross%3E2136592681%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2136592681&rft_id=info:pmid/&rfr_iscdi=true |