Electromagnetic Design of a Magnetically Coupled Spatial Power Combiner

The design of a two-dimensional spatial beam-combining network employing a parallel-plate superconducting waveguide filled with a monocrystalline silicon dielectric substrate is presented. This component uses arrays of magnetically coupled antenna elements to achieve high coupling efficiency and ful...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of low temperature physics 2018-12, Vol.193 (5-6), p.777-785
Hauptverfasser: Bulcha, B. T., Cataldo, G., Stevenson, T. R., U-Yen, K., Moseley, S. H., Wollack, E. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 785
container_issue 5-6
container_start_page 777
container_title Journal of low temperature physics
container_volume 193
creator Bulcha, B. T.
Cataldo, G.
Stevenson, T. R.
U-Yen, K.
Moseley, S. H.
Wollack, E. J.
description The design of a two-dimensional spatial beam-combining network employing a parallel-plate superconducting waveguide filled with a monocrystalline silicon dielectric substrate is presented. This component uses arrays of magnetically coupled antenna elements to achieve high coupling efficiency and full sampling of the intensity distribution while avoiding diffractive losses in the multimode waveguide region. These attributes enable the structure’s use in realizing compact far-infrared spectrometers for astrophysical and instrumentation applications. If unterminated, reflections within a finite-sized spatial beam combiner can potentially lead to spurious couplings between elements. A planar meta-material electromagnetic absorber is implemented to control this response within the device. This broadband termination absorbs greater than 0.99 of the power over the 1.7:1 operational band at angles ranging from normal to near-parallel incidence. The design approach, simulations and applications of the spatial power combiner and meta-material termination structure are presented.
doi_str_mv 10.1007/s10909-018-1923-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2136592681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2136592681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-b6898dee186d2b2032b35686e40b6ebca6abe5d23e7312cbd59b1bf5202413e53</originalsourceid><addsrcrecordid>eNp1kFFLwzAUhYMoOKc_wLeCz9HcmyVtHmXOKUwU1OeQtLejo2tr0iH79-vowCefLhzOdy58jN2CuAch0ocIwgjDBWQcDEqOZ2wCKpU8lSo9ZxMhEDmigUt2FeNGCGEyLSdsuagp70O7deuG-ipPnihW6yZpy8Qlb6fQ1fU-mbe7rqYi-excX7k6-Wh_KQzp1lcNhWt2Ubo60s3pTtn38-Jr_sJX78vX-eOK5xJ0z73OTFYQQaYL9Cgkeql0pmkmvCafO-08qQIlpRIw94UyHnypUOAMJCk5ZXfjbhfanx3F3m7aXWiGlxZBamVQZzC0YGzloY0xUGm7UG1d2FsQ9ujLjr7s4MsefVkcGByZOHSbNYW_5f-hA_nYbMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2136592681</pqid></control><display><type>article</type><title>Electromagnetic Design of a Magnetically Coupled Spatial Power Combiner</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bulcha, B. T. ; Cataldo, G. ; Stevenson, T. R. ; U-Yen, K. ; Moseley, S. H. ; Wollack, E. J.</creator><creatorcontrib>Bulcha, B. T. ; Cataldo, G. ; Stevenson, T. R. ; U-Yen, K. ; Moseley, S. H. ; Wollack, E. J.</creatorcontrib><description>The design of a two-dimensional spatial beam-combining network employing a parallel-plate superconducting waveguide filled with a monocrystalline silicon dielectric substrate is presented. This component uses arrays of magnetically coupled antenna elements to achieve high coupling efficiency and full sampling of the intensity distribution while avoiding diffractive losses in the multimode waveguide region. These attributes enable the structure’s use in realizing compact far-infrared spectrometers for astrophysical and instrumentation applications. If unterminated, reflections within a finite-sized spatial beam combiner can potentially lead to spurious couplings between elements. A planar meta-material electromagnetic absorber is implemented to control this response within the device. This broadband termination absorbs greater than 0.99 of the power over the 1.7:1 operational band at angles ranging from normal to near-parallel incidence. The design approach, simulations and applications of the spatial power combiner and meta-material termination structure are presented.</description><identifier>ISSN: 0022-2291</identifier><identifier>EISSN: 1573-7357</identifier><identifier>DOI: 10.1007/s10909-018-1923-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Antenna arrays ; Broadband ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; Couplings ; Far infrared radiation ; Incidence angle ; Infrared spectrometers ; Low temperature physics ; Magnetic Materials ; Magnetism ; Metamaterials ; Physics ; Physics and Astronomy ; Plates (structural members) ; Power combiners ; Silicon substrates ; Spectrometers</subject><ispartof>Journal of low temperature physics, 2018-12, Vol.193 (5-6), p.777-785</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-b6898dee186d2b2032b35686e40b6ebca6abe5d23e7312cbd59b1bf5202413e53</citedby><cites>FETCH-LOGICAL-c316t-b6898dee186d2b2032b35686e40b6ebca6abe5d23e7312cbd59b1bf5202413e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10909-018-1923-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10909-018-1923-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Bulcha, B. T.</creatorcontrib><creatorcontrib>Cataldo, G.</creatorcontrib><creatorcontrib>Stevenson, T. R.</creatorcontrib><creatorcontrib>U-Yen, K.</creatorcontrib><creatorcontrib>Moseley, S. H.</creatorcontrib><creatorcontrib>Wollack, E. J.</creatorcontrib><title>Electromagnetic Design of a Magnetically Coupled Spatial Power Combiner</title><title>Journal of low temperature physics</title><addtitle>J Low Temp Phys</addtitle><description>The design of a two-dimensional spatial beam-combining network employing a parallel-plate superconducting waveguide filled with a monocrystalline silicon dielectric substrate is presented. This component uses arrays of magnetically coupled antenna elements to achieve high coupling efficiency and full sampling of the intensity distribution while avoiding diffractive losses in the multimode waveguide region. These attributes enable the structure’s use in realizing compact far-infrared spectrometers for astrophysical and instrumentation applications. If unterminated, reflections within a finite-sized spatial beam combiner can potentially lead to spurious couplings between elements. A planar meta-material electromagnetic absorber is implemented to control this response within the device. This broadband termination absorbs greater than 0.99 of the power over the 1.7:1 operational band at angles ranging from normal to near-parallel incidence. The design approach, simulations and applications of the spatial power combiner and meta-material termination structure are presented.</description><subject>Antenna arrays</subject><subject>Broadband</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Couplings</subject><subject>Far infrared radiation</subject><subject>Incidence angle</subject><subject>Infrared spectrometers</subject><subject>Low temperature physics</subject><subject>Magnetic Materials</subject><subject>Magnetism</subject><subject>Metamaterials</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Plates (structural members)</subject><subject>Power combiners</subject><subject>Silicon substrates</subject><subject>Spectrometers</subject><issn>0022-2291</issn><issn>1573-7357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kFFLwzAUhYMoOKc_wLeCz9HcmyVtHmXOKUwU1OeQtLejo2tr0iH79-vowCefLhzOdy58jN2CuAch0ocIwgjDBWQcDEqOZ2wCKpU8lSo9ZxMhEDmigUt2FeNGCGEyLSdsuagp70O7deuG-ipPnihW6yZpy8Qlb6fQ1fU-mbe7rqYi-excX7k6-Wh_KQzp1lcNhWt2Ubo60s3pTtn38-Jr_sJX78vX-eOK5xJ0z73OTFYQQaYL9Cgkeql0pmkmvCafO-08qQIlpRIw94UyHnypUOAMJCk5ZXfjbhfanx3F3m7aXWiGlxZBamVQZzC0YGzloY0xUGm7UG1d2FsQ9ujLjr7s4MsefVkcGByZOHSbNYW_5f-hA_nYbMQ</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Bulcha, B. T.</creator><creator>Cataldo, G.</creator><creator>Stevenson, T. R.</creator><creator>U-Yen, K.</creator><creator>Moseley, S. H.</creator><creator>Wollack, E. J.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181201</creationdate><title>Electromagnetic Design of a Magnetically Coupled Spatial Power Combiner</title><author>Bulcha, B. T. ; Cataldo, G. ; Stevenson, T. R. ; U-Yen, K. ; Moseley, S. H. ; Wollack, E. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-b6898dee186d2b2032b35686e40b6ebca6abe5d23e7312cbd59b1bf5202413e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Antenna arrays</topic><topic>Broadband</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Couplings</topic><topic>Far infrared radiation</topic><topic>Incidence angle</topic><topic>Infrared spectrometers</topic><topic>Low temperature physics</topic><topic>Magnetic Materials</topic><topic>Magnetism</topic><topic>Metamaterials</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Plates (structural members)</topic><topic>Power combiners</topic><topic>Silicon substrates</topic><topic>Spectrometers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bulcha, B. T.</creatorcontrib><creatorcontrib>Cataldo, G.</creatorcontrib><creatorcontrib>Stevenson, T. R.</creatorcontrib><creatorcontrib>U-Yen, K.</creatorcontrib><creatorcontrib>Moseley, S. H.</creatorcontrib><creatorcontrib>Wollack, E. J.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of low temperature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bulcha, B. T.</au><au>Cataldo, G.</au><au>Stevenson, T. R.</au><au>U-Yen, K.</au><au>Moseley, S. H.</au><au>Wollack, E. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electromagnetic Design of a Magnetically Coupled Spatial Power Combiner</atitle><jtitle>Journal of low temperature physics</jtitle><stitle>J Low Temp Phys</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>193</volume><issue>5-6</issue><spage>777</spage><epage>785</epage><pages>777-785</pages><issn>0022-2291</issn><eissn>1573-7357</eissn><abstract>The design of a two-dimensional spatial beam-combining network employing a parallel-plate superconducting waveguide filled with a monocrystalline silicon dielectric substrate is presented. This component uses arrays of magnetically coupled antenna elements to achieve high coupling efficiency and full sampling of the intensity distribution while avoiding diffractive losses in the multimode waveguide region. These attributes enable the structure’s use in realizing compact far-infrared spectrometers for astrophysical and instrumentation applications. If unterminated, reflections within a finite-sized spatial beam combiner can potentially lead to spurious couplings between elements. A planar meta-material electromagnetic absorber is implemented to control this response within the device. This broadband termination absorbs greater than 0.99 of the power over the 1.7:1 operational band at angles ranging from normal to near-parallel incidence. The design approach, simulations and applications of the spatial power combiner and meta-material termination structure are presented.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10909-018-1923-2</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2291
ispartof Journal of low temperature physics, 2018-12, Vol.193 (5-6), p.777-785
issn 0022-2291
1573-7357
language eng
recordid cdi_proquest_journals_2136592681
source SpringerLink Journals - AutoHoldings
subjects Antenna arrays
Broadband
Characterization and Evaluation of Materials
Condensed Matter Physics
Couplings
Far infrared radiation
Incidence angle
Infrared spectrometers
Low temperature physics
Magnetic Materials
Magnetism
Metamaterials
Physics
Physics and Astronomy
Plates (structural members)
Power combiners
Silicon substrates
Spectrometers
title Electromagnetic Design of a Magnetically Coupled Spatial Power Combiner
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T09%3A11%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electromagnetic%20Design%20of%20a%20Magnetically%20Coupled%20Spatial%20Power%20Combiner&rft.jtitle=Journal%20of%20low%20temperature%20physics&rft.au=Bulcha,%20B.%20T.&rft.date=2018-12-01&rft.volume=193&rft.issue=5-6&rft.spage=777&rft.epage=785&rft.pages=777-785&rft.issn=0022-2291&rft.eissn=1573-7357&rft_id=info:doi/10.1007/s10909-018-1923-2&rft_dat=%3Cproquest_cross%3E2136592681%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2136592681&rft_id=info:pmid/&rfr_iscdi=true