Structure, Properties and Applications of Some Simultaneous Decompositions for Quaternion Matrices Involving ϕ-Skew-Hermicity

Let H be the real quaternion algebra and H m × n denote the set of all m × n matrices over H . For A ∈ H m × n , we denote by A ϕ the n × m matrix obtained by applying ϕ entrywise to the transposed matrix A t , where ϕ is a nonstandard involution of H . A ∈ H n × n is said to be ϕ -skew-Hermitian if...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in applied Clifford algebras 2019-02, Vol.29 (1), p.1-31
1. Verfasser: He, Zhuo-Heng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let H be the real quaternion algebra and H m × n denote the set of all m × n matrices over H . For A ∈ H m × n , we denote by A ϕ the n × m matrix obtained by applying ϕ entrywise to the transposed matrix A t , where ϕ is a nonstandard involution of H . A ∈ H n × n is said to be ϕ -skew-Hermitian if A = - A ϕ . In this paper, we investigate and analyze in detail the structure and properties of a simultaneous decomposition for six quaternion matrices involving ϕ -skew-Hermicity: where A and F are ϕ -skew-Hermitian. Using this simultaneous decomposition, we give some practical necessary and sufficient conditions for the existence of a ϕ -skew-Hermitian solution ( X ,  Y ,  Z ) to the system of quaternion matrix equations Apart from proving an expression for the general ϕ -skew-Hermitian solution to this system, we derive the β ( ϕ ) -signature bounds of the ϕ -skew-Hermitian solution in terms of the coefficient matrices. Moreover, we obtain necessary and sufficient conditions for the system to have β ( ϕ ) -positive definite, β ( ϕ ) -positive semidefinite, β ( ϕ ) -negative definite and β ( ϕ ) -negative semidefinite solutions. We also give some numerical examples to illustrate our results.
ISSN:0188-7009
1661-4909
DOI:10.1007/s00006-018-0921-4