Fabrication and Characterization of Silicon (100) Membranes for a Multi-beam Superconducting Heterodyne Receiver

We fabricated silicon (100) membranes of 3 mm in diameter on the surface of silicon-on-insulator (SOI) substrates and investigated the characteristics of the membranes. The handle layer of one SOI substrate was etched using deep reactive ion etching process with the buried oxide (BOX) layer that rem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of low temperature physics 2018-12, Vol.193 (5-6), p.720-725
Hauptverfasser: Ezaki, Shohei, Shan, Wenlei, Kojima, Takafumi, Gonzalez, Alvaro, Asayama, Shin’ichiro, Noguchi, Takashi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 725
container_issue 5-6
container_start_page 720
container_title Journal of low temperature physics
container_volume 193
creator Ezaki, Shohei
Shan, Wenlei
Kojima, Takafumi
Gonzalez, Alvaro
Asayama, Shin’ichiro
Noguchi, Takashi
description We fabricated silicon (100) membranes of 3 mm in diameter on the surface of silicon-on-insulator (SOI) substrates and investigated the characteristics of the membranes. The handle layer of one SOI substrate was etched using deep reactive ion etching process with the buried oxide (BOX) layer that remained together with the device layer. The BOX layer of the other SOI substrate was removed using C 4 F 8 -based plasma etching after the handle layer etching. The surfaces of both silicon (100) membranes were observed using the scanning white light interferometer system at room temperature. Both silicon (100) membranes have dome-like deformations. The silicon (100) membranes are effectively flattened by etching the BOX layer under the device layer. Both silicon (100) membranes were cooled from room temperature to 4 K by a Gifford–McMahon refrigerator. Wrinkles appeared on the surfaces of both silicon (100) membranes when the temperature dropped to about 200 K. However, the wrinkles disappeared below about 180 K. This phenomenon indicates the wrinkles at low temperature would depend on the properties of the silicon (100) of the device layers and independent of the properties of the BOX layers under the silicon (100) membranes.
doi_str_mv 10.1007/s10909-018-2004-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2136592349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2136592349</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-bf5eb89c7064e704fb70392be356d8c62589343937c59b1944133f42aba507423</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvAix6ik4_dbI5S1AoWwY9zSNJZTWl3a7Ir6K93ywqePM0wPO8z8BJyyuGSA-irzMGAYcArJgAUE3tkwgstmZaF3icTACGYEIYfkqOcVwBgqlJOyPbW-RSD62LbUNcs6ezdJRc6TPF7PLY1fY7rGIb1fHh1QRe48ck1mGndJurool93kXl0G_rcbzEN5LIPXWze6BwHUbv8apA-YcD4iemYHNRunfHkd07J6-3Ny2zOHh7v7mfXDyzISnTM1wX6ygQNpUINqvYapBEeZVEuq1CKojJSSSN1KIznRikuZa2E864ArYSckrPRu03tR4-5s6u2T83w0gouy8IIqcxA8ZEKqc05YW23KW5c-rIc7K5YOxZrh2Ltrli7M4sxkwe2ecP0Z_4_9ANnaHoR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2136592349</pqid></control><display><type>article</type><title>Fabrication and Characterization of Silicon (100) Membranes for a Multi-beam Superconducting Heterodyne Receiver</title><source>SpringerNature Journals</source><creator>Ezaki, Shohei ; Shan, Wenlei ; Kojima, Takafumi ; Gonzalez, Alvaro ; Asayama, Shin’ichiro ; Noguchi, Takashi</creator><creatorcontrib>Ezaki, Shohei ; Shan, Wenlei ; Kojima, Takafumi ; Gonzalez, Alvaro ; Asayama, Shin’ichiro ; Noguchi, Takashi</creatorcontrib><description>We fabricated silicon (100) membranes of 3 mm in diameter on the surface of silicon-on-insulator (SOI) substrates and investigated the characteristics of the membranes. The handle layer of one SOI substrate was etched using deep reactive ion etching process with the buried oxide (BOX) layer that remained together with the device layer. The BOX layer of the other SOI substrate was removed using C 4 F 8 -based plasma etching after the handle layer etching. The surfaces of both silicon (100) membranes were observed using the scanning white light interferometer system at room temperature. Both silicon (100) membranes have dome-like deformations. The silicon (100) membranes are effectively flattened by etching the BOX layer under the device layer. Both silicon (100) membranes were cooled from room temperature to 4 K by a Gifford–McMahon refrigerator. Wrinkles appeared on the surfaces of both silicon (100) membranes when the temperature dropped to about 200 K. However, the wrinkles disappeared below about 180 K. This phenomenon indicates the wrinkles at low temperature would depend on the properties of the silicon (100) of the device layers and independent of the properties of the BOX layers under the silicon (100) membranes.</description><identifier>ISSN: 0022-2291</identifier><identifier>EISSN: 1573-7357</identifier><identifier>DOI: 10.1007/s10909-018-2004-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Condensed Matter Physics ; Deformation effects ; Ion etching ; Low temperature physics ; Magnetic Materials ; Magnetism ; Membranes ; Physics ; Physics and Astronomy ; Plasma etching ; Reactive ion etching ; Silicon ; Silicon substrates ; White light</subject><ispartof>Journal of low temperature physics, 2018-12, Vol.193 (5-6), p.720-725</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-bf5eb89c7064e704fb70392be356d8c62589343937c59b1944133f42aba507423</citedby><cites>FETCH-LOGICAL-c382t-bf5eb89c7064e704fb70392be356d8c62589343937c59b1944133f42aba507423</cites><orcidid>0000-0002-0009-0363</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10909-018-2004-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10909-018-2004-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Ezaki, Shohei</creatorcontrib><creatorcontrib>Shan, Wenlei</creatorcontrib><creatorcontrib>Kojima, Takafumi</creatorcontrib><creatorcontrib>Gonzalez, Alvaro</creatorcontrib><creatorcontrib>Asayama, Shin’ichiro</creatorcontrib><creatorcontrib>Noguchi, Takashi</creatorcontrib><title>Fabrication and Characterization of Silicon (100) Membranes for a Multi-beam Superconducting Heterodyne Receiver</title><title>Journal of low temperature physics</title><addtitle>J Low Temp Phys</addtitle><description>We fabricated silicon (100) membranes of 3 mm in diameter on the surface of silicon-on-insulator (SOI) substrates and investigated the characteristics of the membranes. The handle layer of one SOI substrate was etched using deep reactive ion etching process with the buried oxide (BOX) layer that remained together with the device layer. The BOX layer of the other SOI substrate was removed using C 4 F 8 -based plasma etching after the handle layer etching. The surfaces of both silicon (100) membranes were observed using the scanning white light interferometer system at room temperature. Both silicon (100) membranes have dome-like deformations. The silicon (100) membranes are effectively flattened by etching the BOX layer under the device layer. Both silicon (100) membranes were cooled from room temperature to 4 K by a Gifford–McMahon refrigerator. Wrinkles appeared on the surfaces of both silicon (100) membranes when the temperature dropped to about 200 K. However, the wrinkles disappeared below about 180 K. This phenomenon indicates the wrinkles at low temperature would depend on the properties of the silicon (100) of the device layers and independent of the properties of the BOX layers under the silicon (100) membranes.</description><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Deformation effects</subject><subject>Ion etching</subject><subject>Low temperature physics</subject><subject>Magnetic Materials</subject><subject>Magnetism</subject><subject>Membranes</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Plasma etching</subject><subject>Reactive ion etching</subject><subject>Silicon</subject><subject>Silicon substrates</subject><subject>White light</subject><issn>0022-2291</issn><issn>1573-7357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvAix6ik4_dbI5S1AoWwY9zSNJZTWl3a7Ir6K93ywqePM0wPO8z8BJyyuGSA-irzMGAYcArJgAUE3tkwgstmZaF3icTACGYEIYfkqOcVwBgqlJOyPbW-RSD62LbUNcs6ezdJRc6TPF7PLY1fY7rGIb1fHh1QRe48ck1mGndJurool93kXl0G_rcbzEN5LIPXWze6BwHUbv8apA-YcD4iemYHNRunfHkd07J6-3Ny2zOHh7v7mfXDyzISnTM1wX6ygQNpUINqvYapBEeZVEuq1CKojJSSSN1KIznRikuZa2E864ArYSckrPRu03tR4-5s6u2T83w0gouy8IIqcxA8ZEKqc05YW23KW5c-rIc7K5YOxZrh2Ltrli7M4sxkwe2ecP0Z_4_9ANnaHoR</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Ezaki, Shohei</creator><creator>Shan, Wenlei</creator><creator>Kojima, Takafumi</creator><creator>Gonzalez, Alvaro</creator><creator>Asayama, Shin’ichiro</creator><creator>Noguchi, Takashi</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0009-0363</orcidid></search><sort><creationdate>20181201</creationdate><title>Fabrication and Characterization of Silicon (100) Membranes for a Multi-beam Superconducting Heterodyne Receiver</title><author>Ezaki, Shohei ; Shan, Wenlei ; Kojima, Takafumi ; Gonzalez, Alvaro ; Asayama, Shin’ichiro ; Noguchi, Takashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-bf5eb89c7064e704fb70392be356d8c62589343937c59b1944133f42aba507423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Deformation effects</topic><topic>Ion etching</topic><topic>Low temperature physics</topic><topic>Magnetic Materials</topic><topic>Magnetism</topic><topic>Membranes</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Plasma etching</topic><topic>Reactive ion etching</topic><topic>Silicon</topic><topic>Silicon substrates</topic><topic>White light</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ezaki, Shohei</creatorcontrib><creatorcontrib>Shan, Wenlei</creatorcontrib><creatorcontrib>Kojima, Takafumi</creatorcontrib><creatorcontrib>Gonzalez, Alvaro</creatorcontrib><creatorcontrib>Asayama, Shin’ichiro</creatorcontrib><creatorcontrib>Noguchi, Takashi</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of low temperature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ezaki, Shohei</au><au>Shan, Wenlei</au><au>Kojima, Takafumi</au><au>Gonzalez, Alvaro</au><au>Asayama, Shin’ichiro</au><au>Noguchi, Takashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication and Characterization of Silicon (100) Membranes for a Multi-beam Superconducting Heterodyne Receiver</atitle><jtitle>Journal of low temperature physics</jtitle><stitle>J Low Temp Phys</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>193</volume><issue>5-6</issue><spage>720</spage><epage>725</epage><pages>720-725</pages><issn>0022-2291</issn><eissn>1573-7357</eissn><abstract>We fabricated silicon (100) membranes of 3 mm in diameter on the surface of silicon-on-insulator (SOI) substrates and investigated the characteristics of the membranes. The handle layer of one SOI substrate was etched using deep reactive ion etching process with the buried oxide (BOX) layer that remained together with the device layer. The BOX layer of the other SOI substrate was removed using C 4 F 8 -based plasma etching after the handle layer etching. The surfaces of both silicon (100) membranes were observed using the scanning white light interferometer system at room temperature. Both silicon (100) membranes have dome-like deformations. The silicon (100) membranes are effectively flattened by etching the BOX layer under the device layer. Both silicon (100) membranes were cooled from room temperature to 4 K by a Gifford–McMahon refrigerator. Wrinkles appeared on the surfaces of both silicon (100) membranes when the temperature dropped to about 200 K. However, the wrinkles disappeared below about 180 K. This phenomenon indicates the wrinkles at low temperature would depend on the properties of the silicon (100) of the device layers and independent of the properties of the BOX layers under the silicon (100) membranes.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10909-018-2004-2</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-0009-0363</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2291
ispartof Journal of low temperature physics, 2018-12, Vol.193 (5-6), p.720-725
issn 0022-2291
1573-7357
language eng
recordid cdi_proquest_journals_2136592349
source SpringerNature Journals
subjects Characterization and Evaluation of Materials
Condensed Matter Physics
Deformation effects
Ion etching
Low temperature physics
Magnetic Materials
Magnetism
Membranes
Physics
Physics and Astronomy
Plasma etching
Reactive ion etching
Silicon
Silicon substrates
White light
title Fabrication and Characterization of Silicon (100) Membranes for a Multi-beam Superconducting Heterodyne Receiver
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T11%3A44%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20and%20Characterization%20of%20Silicon%20(100)%20Membranes%20for%20a%20Multi-beam%20Superconducting%20Heterodyne%20Receiver&rft.jtitle=Journal%20of%20low%20temperature%20physics&rft.au=Ezaki,%20Shohei&rft.date=2018-12-01&rft.volume=193&rft.issue=5-6&rft.spage=720&rft.epage=725&rft.pages=720-725&rft.issn=0022-2291&rft.eissn=1573-7357&rft_id=info:doi/10.1007/s10909-018-2004-2&rft_dat=%3Cproquest_cross%3E2136592349%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2136592349&rft_id=info:pmid/&rfr_iscdi=true