Experiments and simulations of micro-hole manufacturing by electrophoresis-assisted micro-ultrasonic machining

Electrophoresis-assisted micro-ultrasonic machining (EPAMUSM) is an effective method for solving the problem of using traditional micro-ultrasonic machining (MUSM) to fabricate micro-holes in materials that are hard and brittle, namely the low utilization ratio of abrasive particles. EPAMUSM uses an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials processing technology 2019-02, Vol.264, p.10-20
Hauptverfasser: He, J.F., Guo, Z.N., Lian, H.S., Liu, J.W., Yao, Z., Deng, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20
container_issue
container_start_page 10
container_title Journal of materials processing technology
container_volume 264
creator He, J.F.
Guo, Z.N.
Lian, H.S.
Liu, J.W.
Yao, Z.
Deng, Y.
description Electrophoresis-assisted micro-ultrasonic machining (EPAMUSM) is an effective method for solving the problem of using traditional micro-ultrasonic machining (MUSM) to fabricate micro-holes in materials that are hard and brittle, namely the low utilization ratio of abrasive particles. EPAMUSM uses an electric field to attract the abrasive particles to the processing area during processing, which is useful for improving both the utilization ratio of abrasive particles and the processing quality. Numerical simulations of the concentration distributions of abrasive particles in MUSM and EPAMUSM show that the abrasive concentration on the tool surface is much higher in EPAMUSM. The concentration increases rapidly from 1 mol/m3 to 4.68 mol/m3 after 10 s in EPAMUSM. Comparative experiments show that EPAMUSM has advantages over MUSM under the same processing conditions: the EPAMUSM edge chipping rate (0.03) is much less than the MUSM one (0.22) and the EPAMUSM material removal rate (1.916 × 10−4 mm3/min) is marginally better than the MUSM one (1.718 × 10−4 mm3/min). Single-factor experiments are used to study how varying certain parameters (namely DC voltage, ultrasonic power, and spindle speed) affects EPAMUSM manufacturing quality and efficiency. Finally, the processing parameters are optimized by means of response-surface experiments, and the optimum EPAMUSM processing parameters are determined (namely an applied voltage of 7.5 V, an ultrasonic power of 22.5 W, a spindle speed of 300 rpm, and a mass fraction of 10%).
doi_str_mv 10.1016/j.jmatprotec.2018.08.046
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2136513141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924013618303881</els_id><sourcerecordid>2136513141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-24a90c7ca74439574585add4502c8b839326ece8c26e5c7d38f0a5bfe0661c193</originalsourceid><addsrcrecordid>eNqFkEtLxDAQgIMouK7-h4Dn1qRJ0_Soy_oAwYueQzaduiltsiapuP_eLLvgURhmLvPN40MIU1JSQsXdUA6TTrvgE5iyIlSWJAcXZ2hBZcMK3jT8HC1IW_GCUCYu0VWMAyG0IVIukFv_7CDYCVyKWLsORzvNo07Wu4h9jydrgi-2fgQ8aTf32qQ5WPeJN3sMI5gU_G7rA0QbCx1zTtCdoHlMQUfvrMmo2VqXsWt00esxws2pLtHH4_p99Vy8vj29rO5fC8O4SEXFdUtMY3TDOWvrhtey1l3Ha1IZuZGsZZUAA9LkUpumY7Inut70QISghrZsiW6Pc7OYrxliUoOfg8srVZUl1JRRTnOXPHblc2MM0KtdVqHDXlGiDnbVoP7sqoNdRXJwkdGHIwr5i28LQUVjwRnobMhWVOft_0N-AdCyi5Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2136513141</pqid></control><display><type>article</type><title>Experiments and simulations of micro-hole manufacturing by electrophoresis-assisted micro-ultrasonic machining</title><source>Elsevier ScienceDirect Journals</source><creator>He, J.F. ; Guo, Z.N. ; Lian, H.S. ; Liu, J.W. ; Yao, Z. ; Deng, Y.</creator><creatorcontrib>He, J.F. ; Guo, Z.N. ; Lian, H.S. ; Liu, J.W. ; Yao, Z. ; Deng, Y.</creatorcontrib><description>Electrophoresis-assisted micro-ultrasonic machining (EPAMUSM) is an effective method for solving the problem of using traditional micro-ultrasonic machining (MUSM) to fabricate micro-holes in materials that are hard and brittle, namely the low utilization ratio of abrasive particles. EPAMUSM uses an electric field to attract the abrasive particles to the processing area during processing, which is useful for improving both the utilization ratio of abrasive particles and the processing quality. Numerical simulations of the concentration distributions of abrasive particles in MUSM and EPAMUSM show that the abrasive concentration on the tool surface is much higher in EPAMUSM. The concentration increases rapidly from 1 mol/m3 to 4.68 mol/m3 after 10 s in EPAMUSM. Comparative experiments show that EPAMUSM has advantages over MUSM under the same processing conditions: the EPAMUSM edge chipping rate (0.03) is much less than the MUSM one (0.22) and the EPAMUSM material removal rate (1.916 × 10−4 mm3/min) is marginally better than the MUSM one (1.718 × 10−4 mm3/min). Single-factor experiments are used to study how varying certain parameters (namely DC voltage, ultrasonic power, and spindle speed) affects EPAMUSM manufacturing quality and efficiency. Finally, the processing parameters are optimized by means of response-surface experiments, and the optimum EPAMUSM processing parameters are determined (namely an applied voltage of 7.5 V, an ultrasonic power of 22.5 W, a spindle speed of 300 rpm, and a mass fraction of 10%).</description><identifier>ISSN: 0924-0136</identifier><identifier>EISSN: 1873-4774</identifier><identifier>DOI: 10.1016/j.jmatprotec.2018.08.046</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Brittleness ; Capillary electrophoresis ; Chipping ; Computer simulation ; Electric fields ; Electric potential ; Electrophoresis ; Electrophoresis-assisted machining ; Hard-brittle material ; Manufacturing ; Material removal rate (machining) ; Micro-ultrasonic machining ; Microhardness ; Microholes ; Micromachining ; Microstructure ; Particle size ; Process parameters ; Ultrafine abrasive particles ; Ultrasonic machining</subject><ispartof>Journal of materials processing technology, 2019-02, Vol.264, p.10-20</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Feb 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-24a90c7ca74439574585add4502c8b839326ece8c26e5c7d38f0a5bfe0661c193</citedby><cites>FETCH-LOGICAL-c346t-24a90c7ca74439574585add4502c8b839326ece8c26e5c7d38f0a5bfe0661c193</cites><orcidid>0000-0003-1800-9532</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0924013618303881$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>He, J.F.</creatorcontrib><creatorcontrib>Guo, Z.N.</creatorcontrib><creatorcontrib>Lian, H.S.</creatorcontrib><creatorcontrib>Liu, J.W.</creatorcontrib><creatorcontrib>Yao, Z.</creatorcontrib><creatorcontrib>Deng, Y.</creatorcontrib><title>Experiments and simulations of micro-hole manufacturing by electrophoresis-assisted micro-ultrasonic machining</title><title>Journal of materials processing technology</title><description>Electrophoresis-assisted micro-ultrasonic machining (EPAMUSM) is an effective method for solving the problem of using traditional micro-ultrasonic machining (MUSM) to fabricate micro-holes in materials that are hard and brittle, namely the low utilization ratio of abrasive particles. EPAMUSM uses an electric field to attract the abrasive particles to the processing area during processing, which is useful for improving both the utilization ratio of abrasive particles and the processing quality. Numerical simulations of the concentration distributions of abrasive particles in MUSM and EPAMUSM show that the abrasive concentration on the tool surface is much higher in EPAMUSM. The concentration increases rapidly from 1 mol/m3 to 4.68 mol/m3 after 10 s in EPAMUSM. Comparative experiments show that EPAMUSM has advantages over MUSM under the same processing conditions: the EPAMUSM edge chipping rate (0.03) is much less than the MUSM one (0.22) and the EPAMUSM material removal rate (1.916 × 10−4 mm3/min) is marginally better than the MUSM one (1.718 × 10−4 mm3/min). Single-factor experiments are used to study how varying certain parameters (namely DC voltage, ultrasonic power, and spindle speed) affects EPAMUSM manufacturing quality and efficiency. Finally, the processing parameters are optimized by means of response-surface experiments, and the optimum EPAMUSM processing parameters are determined (namely an applied voltage of 7.5 V, an ultrasonic power of 22.5 W, a spindle speed of 300 rpm, and a mass fraction of 10%).</description><subject>Brittleness</subject><subject>Capillary electrophoresis</subject><subject>Chipping</subject><subject>Computer simulation</subject><subject>Electric fields</subject><subject>Electric potential</subject><subject>Electrophoresis</subject><subject>Electrophoresis-assisted machining</subject><subject>Hard-brittle material</subject><subject>Manufacturing</subject><subject>Material removal rate (machining)</subject><subject>Micro-ultrasonic machining</subject><subject>Microhardness</subject><subject>Microholes</subject><subject>Micromachining</subject><subject>Microstructure</subject><subject>Particle size</subject><subject>Process parameters</subject><subject>Ultrafine abrasive particles</subject><subject>Ultrasonic machining</subject><issn>0924-0136</issn><issn>1873-4774</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAQgIMouK7-h4Dn1qRJ0_Soy_oAwYueQzaduiltsiapuP_eLLvgURhmLvPN40MIU1JSQsXdUA6TTrvgE5iyIlSWJAcXZ2hBZcMK3jT8HC1IW_GCUCYu0VWMAyG0IVIukFv_7CDYCVyKWLsORzvNo07Wu4h9jydrgi-2fgQ8aTf32qQ5WPeJN3sMI5gU_G7rA0QbCx1zTtCdoHlMQUfvrMmo2VqXsWt00esxws2pLtHH4_p99Vy8vj29rO5fC8O4SEXFdUtMY3TDOWvrhtey1l3Ha1IZuZGsZZUAA9LkUpumY7Inut70QISghrZsiW6Pc7OYrxliUoOfg8srVZUl1JRRTnOXPHblc2MM0KtdVqHDXlGiDnbVoP7sqoNdRXJwkdGHIwr5i28LQUVjwRnobMhWVOft_0N-AdCyi5Y</recordid><startdate>201902</startdate><enddate>201902</enddate><creator>He, J.F.</creator><creator>Guo, Z.N.</creator><creator>Lian, H.S.</creator><creator>Liu, J.W.</creator><creator>Yao, Z.</creator><creator>Deng, Y.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1800-9532</orcidid></search><sort><creationdate>201902</creationdate><title>Experiments and simulations of micro-hole manufacturing by electrophoresis-assisted micro-ultrasonic machining</title><author>He, J.F. ; Guo, Z.N. ; Lian, H.S. ; Liu, J.W. ; Yao, Z. ; Deng, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-24a90c7ca74439574585add4502c8b839326ece8c26e5c7d38f0a5bfe0661c193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Brittleness</topic><topic>Capillary electrophoresis</topic><topic>Chipping</topic><topic>Computer simulation</topic><topic>Electric fields</topic><topic>Electric potential</topic><topic>Electrophoresis</topic><topic>Electrophoresis-assisted machining</topic><topic>Hard-brittle material</topic><topic>Manufacturing</topic><topic>Material removal rate (machining)</topic><topic>Micro-ultrasonic machining</topic><topic>Microhardness</topic><topic>Microholes</topic><topic>Micromachining</topic><topic>Microstructure</topic><topic>Particle size</topic><topic>Process parameters</topic><topic>Ultrafine abrasive particles</topic><topic>Ultrasonic machining</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, J.F.</creatorcontrib><creatorcontrib>Guo, Z.N.</creatorcontrib><creatorcontrib>Lian, H.S.</creatorcontrib><creatorcontrib>Liu, J.W.</creatorcontrib><creatorcontrib>Yao, Z.</creatorcontrib><creatorcontrib>Deng, Y.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials processing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, J.F.</au><au>Guo, Z.N.</au><au>Lian, H.S.</au><au>Liu, J.W.</au><au>Yao, Z.</au><au>Deng, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experiments and simulations of micro-hole manufacturing by electrophoresis-assisted micro-ultrasonic machining</atitle><jtitle>Journal of materials processing technology</jtitle><date>2019-02</date><risdate>2019</risdate><volume>264</volume><spage>10</spage><epage>20</epage><pages>10-20</pages><issn>0924-0136</issn><eissn>1873-4774</eissn><abstract>Electrophoresis-assisted micro-ultrasonic machining (EPAMUSM) is an effective method for solving the problem of using traditional micro-ultrasonic machining (MUSM) to fabricate micro-holes in materials that are hard and brittle, namely the low utilization ratio of abrasive particles. EPAMUSM uses an electric field to attract the abrasive particles to the processing area during processing, which is useful for improving both the utilization ratio of abrasive particles and the processing quality. Numerical simulations of the concentration distributions of abrasive particles in MUSM and EPAMUSM show that the abrasive concentration on the tool surface is much higher in EPAMUSM. The concentration increases rapidly from 1 mol/m3 to 4.68 mol/m3 after 10 s in EPAMUSM. Comparative experiments show that EPAMUSM has advantages over MUSM under the same processing conditions: the EPAMUSM edge chipping rate (0.03) is much less than the MUSM one (0.22) and the EPAMUSM material removal rate (1.916 × 10−4 mm3/min) is marginally better than the MUSM one (1.718 × 10−4 mm3/min). Single-factor experiments are used to study how varying certain parameters (namely DC voltage, ultrasonic power, and spindle speed) affects EPAMUSM manufacturing quality and efficiency. Finally, the processing parameters are optimized by means of response-surface experiments, and the optimum EPAMUSM processing parameters are determined (namely an applied voltage of 7.5 V, an ultrasonic power of 22.5 W, a spindle speed of 300 rpm, and a mass fraction of 10%).</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jmatprotec.2018.08.046</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1800-9532</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0924-0136
ispartof Journal of materials processing technology, 2019-02, Vol.264, p.10-20
issn 0924-0136
1873-4774
language eng
recordid cdi_proquest_journals_2136513141
source Elsevier ScienceDirect Journals
subjects Brittleness
Capillary electrophoresis
Chipping
Computer simulation
Electric fields
Electric potential
Electrophoresis
Electrophoresis-assisted machining
Hard-brittle material
Manufacturing
Material removal rate (machining)
Micro-ultrasonic machining
Microhardness
Microholes
Micromachining
Microstructure
Particle size
Process parameters
Ultrafine abrasive particles
Ultrasonic machining
title Experiments and simulations of micro-hole manufacturing by electrophoresis-assisted micro-ultrasonic machining
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A20%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experiments%20and%20simulations%20of%20micro-hole%20manufacturing%20by%20electrophoresis-assisted%20micro-ultrasonic%20machining&rft.jtitle=Journal%20of%20materials%20processing%20technology&rft.au=He,%20J.F.&rft.date=2019-02&rft.volume=264&rft.spage=10&rft.epage=20&rft.pages=10-20&rft.issn=0924-0136&rft.eissn=1873-4774&rft_id=info:doi/10.1016/j.jmatprotec.2018.08.046&rft_dat=%3Cproquest_cross%3E2136513141%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2136513141&rft_id=info:pmid/&rft_els_id=S0924013618303881&rfr_iscdi=true