Enhanced ceria nanoflakes using graphene oxide as a sacrificial template for CO oxidation and dry reforming of methane

[Display omitted] •Ceria nanoflakes replicate graphene oxide’s two-dimensional morphology.•Nanoflakes inhibit sintering of both ceria crystallites and deposited Ni particles.•Bare ceria nanoflakes show improved activity for CO oxidation.•Ni-ceria nanoflakes are more stable as a catalyst for dry refo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied catalysis. B, Environmental Environmental, 2019-03, Vol.242, p.358-368
Hauptverfasser: Rood, Shawn C., Ahmet, Huseyin B., Gomez-Ramon, Anais, Torrente-Murciano, Laura, Reina, Tomas R., Eslava, Salvador
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 368
container_issue
container_start_page 358
container_title Applied catalysis. B, Environmental
container_volume 242
creator Rood, Shawn C.
Ahmet, Huseyin B.
Gomez-Ramon, Anais
Torrente-Murciano, Laura
Reina, Tomas R.
Eslava, Salvador
description [Display omitted] •Ceria nanoflakes replicate graphene oxide’s two-dimensional morphology.•Nanoflakes inhibit sintering of both ceria crystallites and deposited Ni particles.•Bare ceria nanoflakes show improved activity for CO oxidation.•Ni-ceria nanoflakes are more stable as a catalyst for dry reforming of methane. The development of novel fabrication methods to produce ceria catalysts with good high-temperature stability is critical for their implementation across a range of different applications. Herein, graphene oxide flakes are used as a sacrificial template in the synthesis of ceria particles to replicate the graphene oxide’s two-dimensionality. While performing the synthesis without graphene oxide results in large agglomerations of ceria crystallites, the addition of graphene oxide during the synthesis results in ceria nanoflakes (400 °C) which results in improved catalytic performance for the oxidation of carbon monoxide. This resistance versus sintering has also a beneficial effect when ceria flakes are used as catalytic support of nickel particles. Improved metal dispersion and high metal-support interaction leads to lower sintering during the dry reforming of methane than similarly prepared un-templated ceria nickel catalysts. These results demonstrate the advantage of using graphene oxide as a sacrificial template for the production of sintering-resistant catalysts with good catalytic performance at high temperatures.
doi_str_mv 10.1016/j.apcatb.2018.10.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2136512969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926337318309597</els_id><sourcerecordid>2136512969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-cb7410933b164392685205c3fd1a849d9daef35bf169f2c46e04df6643a2fe4d3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKv_wEPA89Z8bLe7F0FK_YBCL3oO02TSZm2TNdkW_fdmrWdPA--8887MQ8gtZxPOeHXfTqDT0K8ngvE6SxPG-RkZ8XomC1nX8pyMWCOqQsqZvCRXKbWMMSFFPSLHhd-C12ioxuiAevDB7uADEz0k5zd0E6HbokcavpxBCokCTaCjs0472NEe990OeqQ2RDpf_dqgd8FT8Iaa-E0j5tZ-yAqW7rHP-_CaXFjYJbz5q2Py_rR4m78Uy9Xz6_xxWeiSz_pCr2clZ42Ua16VMr9QTwWbamkNh7psTGMArZyuLa8aK3RZISuNrbIXhMXSyDG5O-V2MXweMPWqDYfo80oluKymXDRVk13lyaVjSCnfq7ro9hC_FWdqIKxadSKsBsKDmgnnsYfTGOYPjg6jStrhANNF1L0ywf0f8ANWi4b6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2136512969</pqid></control><display><type>article</type><title>Enhanced ceria nanoflakes using graphene oxide as a sacrificial template for CO oxidation and dry reforming of methane</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Rood, Shawn C. ; Ahmet, Huseyin B. ; Gomez-Ramon, Anais ; Torrente-Murciano, Laura ; Reina, Tomas R. ; Eslava, Salvador</creator><creatorcontrib>Rood, Shawn C. ; Ahmet, Huseyin B. ; Gomez-Ramon, Anais ; Torrente-Murciano, Laura ; Reina, Tomas R. ; Eslava, Salvador</creatorcontrib><description>[Display omitted] •Ceria nanoflakes replicate graphene oxide’s two-dimensional morphology.•Nanoflakes inhibit sintering of both ceria crystallites and deposited Ni particles.•Bare ceria nanoflakes show improved activity for CO oxidation.•Ni-ceria nanoflakes are more stable as a catalyst for dry reforming of methane. The development of novel fabrication methods to produce ceria catalysts with good high-temperature stability is critical for their implementation across a range of different applications. Herein, graphene oxide flakes are used as a sacrificial template in the synthesis of ceria particles to replicate the graphene oxide’s two-dimensionality. While performing the synthesis without graphene oxide results in large agglomerations of ceria crystallites, the addition of graphene oxide during the synthesis results in ceria nanoflakes (&lt;10 nm) replicating the graphene oxide morphology. This novel shape limits the diffusion of atoms at high temperature to a two-dimensional plane which is translated into a low sintering degree and consequently, an enhanced thermal stability. In this way, the ceria flakes are capable of maintaining high surface areas after calcination at high temperatures (&gt;400 °C) which results in improved catalytic performance for the oxidation of carbon monoxide. This resistance versus sintering has also a beneficial effect when ceria flakes are used as catalytic support of nickel particles. Improved metal dispersion and high metal-support interaction leads to lower sintering during the dry reforming of methane than similarly prepared un-templated ceria nickel catalysts. These results demonstrate the advantage of using graphene oxide as a sacrificial template for the production of sintering-resistant catalysts with good catalytic performance at high temperatures.</description><identifier>ISSN: 0926-3373</identifier><identifier>EISSN: 1873-3883</identifier><identifier>DOI: 10.1016/j.apcatb.2018.10.011</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Carbon monoxide ; Catalysis ; Catalysts ; Ceria ; Cerium oxides ; CO oxidation ; Crystallites ; Crystals ; Diffusion ; Dry methane reforming ; Fabrication ; Flakes ; Graphene ; Graphene oxide ; High temperature ; Metals ; Methane ; Morphology ; Nickel ; Oxidation ; Oxidation resistance ; Production methods ; Reforming ; Replication ; Sintering ; Synthesis ; Template ; Thermal stability</subject><ispartof>Applied catalysis. B, Environmental, 2019-03, Vol.242, p.358-368</ispartof><rights>2018 The Authors</rights><rights>Copyright Elsevier BV Mar 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-cb7410933b164392685205c3fd1a849d9daef35bf169f2c46e04df6643a2fe4d3</citedby><cites>FETCH-LOGICAL-c417t-cb7410933b164392685205c3fd1a849d9daef35bf169f2c46e04df6643a2fe4d3</cites><orcidid>0000-0001-9693-5107 ; 0000-0002-7938-2587 ; 0000-0002-2416-3205 ; 0000-0002-5416-9894</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0926337318309597$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Rood, Shawn C.</creatorcontrib><creatorcontrib>Ahmet, Huseyin B.</creatorcontrib><creatorcontrib>Gomez-Ramon, Anais</creatorcontrib><creatorcontrib>Torrente-Murciano, Laura</creatorcontrib><creatorcontrib>Reina, Tomas R.</creatorcontrib><creatorcontrib>Eslava, Salvador</creatorcontrib><title>Enhanced ceria nanoflakes using graphene oxide as a sacrificial template for CO oxidation and dry reforming of methane</title><title>Applied catalysis. B, Environmental</title><description>[Display omitted] •Ceria nanoflakes replicate graphene oxide’s two-dimensional morphology.•Nanoflakes inhibit sintering of both ceria crystallites and deposited Ni particles.•Bare ceria nanoflakes show improved activity for CO oxidation.•Ni-ceria nanoflakes are more stable as a catalyst for dry reforming of methane. The development of novel fabrication methods to produce ceria catalysts with good high-temperature stability is critical for their implementation across a range of different applications. Herein, graphene oxide flakes are used as a sacrificial template in the synthesis of ceria particles to replicate the graphene oxide’s two-dimensionality. While performing the synthesis without graphene oxide results in large agglomerations of ceria crystallites, the addition of graphene oxide during the synthesis results in ceria nanoflakes (&lt;10 nm) replicating the graphene oxide morphology. This novel shape limits the diffusion of atoms at high temperature to a two-dimensional plane which is translated into a low sintering degree and consequently, an enhanced thermal stability. In this way, the ceria flakes are capable of maintaining high surface areas after calcination at high temperatures (&gt;400 °C) which results in improved catalytic performance for the oxidation of carbon monoxide. This resistance versus sintering has also a beneficial effect when ceria flakes are used as catalytic support of nickel particles. Improved metal dispersion and high metal-support interaction leads to lower sintering during the dry reforming of methane than similarly prepared un-templated ceria nickel catalysts. These results demonstrate the advantage of using graphene oxide as a sacrificial template for the production of sintering-resistant catalysts with good catalytic performance at high temperatures.</description><subject>Carbon monoxide</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Ceria</subject><subject>Cerium oxides</subject><subject>CO oxidation</subject><subject>Crystallites</subject><subject>Crystals</subject><subject>Diffusion</subject><subject>Dry methane reforming</subject><subject>Fabrication</subject><subject>Flakes</subject><subject>Graphene</subject><subject>Graphene oxide</subject><subject>High temperature</subject><subject>Metals</subject><subject>Methane</subject><subject>Morphology</subject><subject>Nickel</subject><subject>Oxidation</subject><subject>Oxidation resistance</subject><subject>Production methods</subject><subject>Reforming</subject><subject>Replication</subject><subject>Sintering</subject><subject>Synthesis</subject><subject>Template</subject><subject>Thermal stability</subject><issn>0926-3373</issn><issn>1873-3883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKv_wEPA89Z8bLe7F0FK_YBCL3oO02TSZm2TNdkW_fdmrWdPA--8887MQ8gtZxPOeHXfTqDT0K8ngvE6SxPG-RkZ8XomC1nX8pyMWCOqQsqZvCRXKbWMMSFFPSLHhd-C12ioxuiAevDB7uADEz0k5zd0E6HbokcavpxBCokCTaCjs0472NEe990OeqQ2RDpf_dqgd8FT8Iaa-E0j5tZ-yAqW7rHP-_CaXFjYJbz5q2Py_rR4m78Uy9Xz6_xxWeiSz_pCr2clZ42Ua16VMr9QTwWbamkNh7psTGMArZyuLa8aK3RZISuNrbIXhMXSyDG5O-V2MXweMPWqDYfo80oluKymXDRVk13lyaVjSCnfq7ro9hC_FWdqIKxadSKsBsKDmgnnsYfTGOYPjg6jStrhANNF1L0ywf0f8ANWi4b6</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Rood, Shawn C.</creator><creator>Ahmet, Huseyin B.</creator><creator>Gomez-Ramon, Anais</creator><creator>Torrente-Murciano, Laura</creator><creator>Reina, Tomas R.</creator><creator>Eslava, Salvador</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-9693-5107</orcidid><orcidid>https://orcid.org/0000-0002-7938-2587</orcidid><orcidid>https://orcid.org/0000-0002-2416-3205</orcidid><orcidid>https://orcid.org/0000-0002-5416-9894</orcidid></search><sort><creationdate>20190301</creationdate><title>Enhanced ceria nanoflakes using graphene oxide as a sacrificial template for CO oxidation and dry reforming of methane</title><author>Rood, Shawn C. ; Ahmet, Huseyin B. ; Gomez-Ramon, Anais ; Torrente-Murciano, Laura ; Reina, Tomas R. ; Eslava, Salvador</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-cb7410933b164392685205c3fd1a849d9daef35bf169f2c46e04df6643a2fe4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Carbon monoxide</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Ceria</topic><topic>Cerium oxides</topic><topic>CO oxidation</topic><topic>Crystallites</topic><topic>Crystals</topic><topic>Diffusion</topic><topic>Dry methane reforming</topic><topic>Fabrication</topic><topic>Flakes</topic><topic>Graphene</topic><topic>Graphene oxide</topic><topic>High temperature</topic><topic>Metals</topic><topic>Methane</topic><topic>Morphology</topic><topic>Nickel</topic><topic>Oxidation</topic><topic>Oxidation resistance</topic><topic>Production methods</topic><topic>Reforming</topic><topic>Replication</topic><topic>Sintering</topic><topic>Synthesis</topic><topic>Template</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rood, Shawn C.</creatorcontrib><creatorcontrib>Ahmet, Huseyin B.</creatorcontrib><creatorcontrib>Gomez-Ramon, Anais</creatorcontrib><creatorcontrib>Torrente-Murciano, Laura</creatorcontrib><creatorcontrib>Reina, Tomas R.</creatorcontrib><creatorcontrib>Eslava, Salvador</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Applied catalysis. B, Environmental</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rood, Shawn C.</au><au>Ahmet, Huseyin B.</au><au>Gomez-Ramon, Anais</au><au>Torrente-Murciano, Laura</au><au>Reina, Tomas R.</au><au>Eslava, Salvador</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced ceria nanoflakes using graphene oxide as a sacrificial template for CO oxidation and dry reforming of methane</atitle><jtitle>Applied catalysis. B, Environmental</jtitle><date>2019-03-01</date><risdate>2019</risdate><volume>242</volume><spage>358</spage><epage>368</epage><pages>358-368</pages><issn>0926-3373</issn><eissn>1873-3883</eissn><abstract>[Display omitted] •Ceria nanoflakes replicate graphene oxide’s two-dimensional morphology.•Nanoflakes inhibit sintering of both ceria crystallites and deposited Ni particles.•Bare ceria nanoflakes show improved activity for CO oxidation.•Ni-ceria nanoflakes are more stable as a catalyst for dry reforming of methane. The development of novel fabrication methods to produce ceria catalysts with good high-temperature stability is critical for their implementation across a range of different applications. Herein, graphene oxide flakes are used as a sacrificial template in the synthesis of ceria particles to replicate the graphene oxide’s two-dimensionality. While performing the synthesis without graphene oxide results in large agglomerations of ceria crystallites, the addition of graphene oxide during the synthesis results in ceria nanoflakes (&lt;10 nm) replicating the graphene oxide morphology. This novel shape limits the diffusion of atoms at high temperature to a two-dimensional plane which is translated into a low sintering degree and consequently, an enhanced thermal stability. In this way, the ceria flakes are capable of maintaining high surface areas after calcination at high temperatures (&gt;400 °C) which results in improved catalytic performance for the oxidation of carbon monoxide. This resistance versus sintering has also a beneficial effect when ceria flakes are used as catalytic support of nickel particles. Improved metal dispersion and high metal-support interaction leads to lower sintering during the dry reforming of methane than similarly prepared un-templated ceria nickel catalysts. These results demonstrate the advantage of using graphene oxide as a sacrificial template for the production of sintering-resistant catalysts with good catalytic performance at high temperatures.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apcatb.2018.10.011</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9693-5107</orcidid><orcidid>https://orcid.org/0000-0002-7938-2587</orcidid><orcidid>https://orcid.org/0000-0002-2416-3205</orcidid><orcidid>https://orcid.org/0000-0002-5416-9894</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0926-3373
ispartof Applied catalysis. B, Environmental, 2019-03, Vol.242, p.358-368
issn 0926-3373
1873-3883
language eng
recordid cdi_proquest_journals_2136512969
source Elsevier ScienceDirect Journals Complete
subjects Carbon monoxide
Catalysis
Catalysts
Ceria
Cerium oxides
CO oxidation
Crystallites
Crystals
Diffusion
Dry methane reforming
Fabrication
Flakes
Graphene
Graphene oxide
High temperature
Metals
Methane
Morphology
Nickel
Oxidation
Oxidation resistance
Production methods
Reforming
Replication
Sintering
Synthesis
Template
Thermal stability
title Enhanced ceria nanoflakes using graphene oxide as a sacrificial template for CO oxidation and dry reforming of methane
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T14%3A56%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20ceria%20nanoflakes%20using%20graphene%20oxide%20as%20a%20sacrificial%20template%20for%20CO%20oxidation%20and%20dry%20reforming%20of%20methane&rft.jtitle=Applied%20catalysis.%20B,%20Environmental&rft.au=Rood,%20Shawn%20C.&rft.date=2019-03-01&rft.volume=242&rft.spage=358&rft.epage=368&rft.pages=358-368&rft.issn=0926-3373&rft.eissn=1873-3883&rft_id=info:doi/10.1016/j.apcatb.2018.10.011&rft_dat=%3Cproquest_cross%3E2136512969%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2136512969&rft_id=info:pmid/&rft_els_id=S0926337318309597&rfr_iscdi=true