ACTT: Automotive CAN Tokenization and Translation

Modern vehicles contain scores of Electrical Control Units (ECUs) that broadcast messages over a Controller Area Network (CAN). Vehicle manufacturers rely on security through obscurity by concealing their unique mapping of CAN messages to vehicle functions which differs for each make, model, year, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-11
Hauptverfasser: Verma, Miki E, Bridges, Robert A, Hollifield, Samuel C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Verma, Miki E
Bridges, Robert A
Hollifield, Samuel C
description Modern vehicles contain scores of Electrical Control Units (ECUs) that broadcast messages over a Controller Area Network (CAN). Vehicle manufacturers rely on security through obscurity by concealing their unique mapping of CAN messages to vehicle functions which differs for each make, model, year, and even trim. This poses a major obstacle for after-market modifications notably performance tuning and in-vehicle network security measures. We present ACTT: Automotive CAN Tokenization and Translation, a novel, vehicle-agnostic, algorithm that leverages available diagnostic information to parse CAN data into meaningful messages, simultaneously cutting binary messages into tokens, and learning the translation to map these contiguous bits to the value of the vehicle function communicated.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2136331940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2136331940</sourcerecordid><originalsourceid>FETCH-proquest_journals_21363319403</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwdHQOCbFScCwtyc_NL8ksS1VwdvRTCMnPTs3LrEosyczPU0jMS1EIKUrMK84B83kYWNMSc4pTeaE0N4Oym2uIs4duQVF-YWlqcUl8Vn5pUR5QKt7I0NgMaLWliYExcaoAQaYyvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2136331940</pqid></control><display><type>article</type><title>ACTT: Automotive CAN Tokenization and Translation</title><source>Freely Accessible Journals</source><creator>Verma, Miki E ; Bridges, Robert A ; Hollifield, Samuel C</creator><creatorcontrib>Verma, Miki E ; Bridges, Robert A ; Hollifield, Samuel C</creatorcontrib><description>Modern vehicles contain scores of Electrical Control Units (ECUs) that broadcast messages over a Controller Area Network (CAN). Vehicle manufacturers rely on security through obscurity by concealing their unique mapping of CAN messages to vehicle functions which differs for each make, model, year, and even trim. This poses a major obstacle for after-market modifications notably performance tuning and in-vehicle network security measures. We present ACTT: Automotive CAN Tokenization and Translation, a novel, vehicle-agnostic, algorithm that leverages available diagnostic information to parse CAN data into meaningful messages, simultaneously cutting binary messages into tokens, and learning the translation to map these contiguous bits to the value of the vehicle function communicated.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Automobiles ; Control equipment ; Controller area network ; Diagnostic systems ; Mapping ; Messages ; Trim</subject><ispartof>arXiv.org, 2018-11</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Verma, Miki E</creatorcontrib><creatorcontrib>Bridges, Robert A</creatorcontrib><creatorcontrib>Hollifield, Samuel C</creatorcontrib><title>ACTT: Automotive CAN Tokenization and Translation</title><title>arXiv.org</title><description>Modern vehicles contain scores of Electrical Control Units (ECUs) that broadcast messages over a Controller Area Network (CAN). Vehicle manufacturers rely on security through obscurity by concealing their unique mapping of CAN messages to vehicle functions which differs for each make, model, year, and even trim. This poses a major obstacle for after-market modifications notably performance tuning and in-vehicle network security measures. We present ACTT: Automotive CAN Tokenization and Translation, a novel, vehicle-agnostic, algorithm that leverages available diagnostic information to parse CAN data into meaningful messages, simultaneously cutting binary messages into tokens, and learning the translation to map these contiguous bits to the value of the vehicle function communicated.</description><subject>Algorithms</subject><subject>Automobiles</subject><subject>Control equipment</subject><subject>Controller area network</subject><subject>Diagnostic systems</subject><subject>Mapping</subject><subject>Messages</subject><subject>Trim</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwdHQOCbFScCwtyc_NL8ksS1VwdvRTCMnPTs3LrEosyczPU0jMS1EIKUrMK84B83kYWNMSc4pTeaE0N4Oym2uIs4duQVF-YWlqcUl8Vn5pUR5QKt7I0NgMaLWliYExcaoAQaYyvA</recordid><startdate>20181119</startdate><enddate>20181119</enddate><creator>Verma, Miki E</creator><creator>Bridges, Robert A</creator><creator>Hollifield, Samuel C</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20181119</creationdate><title>ACTT: Automotive CAN Tokenization and Translation</title><author>Verma, Miki E ; Bridges, Robert A ; Hollifield, Samuel C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21363319403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Automobiles</topic><topic>Control equipment</topic><topic>Controller area network</topic><topic>Diagnostic systems</topic><topic>Mapping</topic><topic>Messages</topic><topic>Trim</topic><toplevel>online_resources</toplevel><creatorcontrib>Verma, Miki E</creatorcontrib><creatorcontrib>Bridges, Robert A</creatorcontrib><creatorcontrib>Hollifield, Samuel C</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Verma, Miki E</au><au>Bridges, Robert A</au><au>Hollifield, Samuel C</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>ACTT: Automotive CAN Tokenization and Translation</atitle><jtitle>arXiv.org</jtitle><date>2018-11-19</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>Modern vehicles contain scores of Electrical Control Units (ECUs) that broadcast messages over a Controller Area Network (CAN). Vehicle manufacturers rely on security through obscurity by concealing their unique mapping of CAN messages to vehicle functions which differs for each make, model, year, and even trim. This poses a major obstacle for after-market modifications notably performance tuning and in-vehicle network security measures. We present ACTT: Automotive CAN Tokenization and Translation, a novel, vehicle-agnostic, algorithm that leverages available diagnostic information to parse CAN data into meaningful messages, simultaneously cutting binary messages into tokens, and learning the translation to map these contiguous bits to the value of the vehicle function communicated.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2018-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2136331940
source Freely Accessible Journals
subjects Algorithms
Automobiles
Control equipment
Controller area network
Diagnostic systems
Mapping
Messages
Trim
title ACTT: Automotive CAN Tokenization and Translation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T19%3A42%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=ACTT:%20Automotive%20CAN%20Tokenization%20and%20Translation&rft.jtitle=arXiv.org&rft.au=Verma,%20Miki%20E&rft.date=2018-11-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2136331940%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2136331940&rft_id=info:pmid/&rfr_iscdi=true