Subquadratic Algorithms for Algebraic 3SUM
The 3SUM problem asks if an input n -set of real numbers contains a triple whose sum is zero. We qualify such a triple of degenerate because the probability of finding one in a random input is zero. We consider the 3POL problem, an algebraic generalization of 3SUM where we replace the sum function b...
Gespeichert in:
Veröffentlicht in: | Discrete & computational geometry 2019-06, Vol.61 (4), p.698-734 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 734 |
---|---|
container_issue | 4 |
container_start_page | 698 |
container_title | Discrete & computational geometry |
container_volume | 61 |
creator | Barba, Luis Cardinal, Jean Iacono, John Langerman, Stefan Ooms, Aurélien Solomon, Noam |
description | The 3SUM problem asks if an input
n
-set of real numbers contains a triple whose sum is zero. We qualify such a triple of
degenerate
because the probability of finding one in a random input is zero. We consider the 3POL problem, an algebraic generalization of 3SUM where we replace the sum function by a constant-degree polynomial in three variables. The motivations are threefold. Raz et al. gave an
O
(
n
11
/
6
)
upper bound on the number of degenerate triples for the 3POL problem. We give algorithms for the corresponding problem of counting them. Grønlund and Pettie designed subquadratic algorithms for 3SUM. We prove that 3POL admits bounded-degree algebraic decision trees of depth
O
(
n
12
/
7
+
ε
)
, and we prove that 3POL can be solved in
O
(
n
2
(
log
log
n
)
3
/
2
/
(
log
n
)
1
/
2
)
time in the real-RAM model, generalizing their results. Finally, we shed light on the General Position Testing (GPT) problem: “Given
n
points in the plane, do three of them lie on a line?”, a key problem in computational geometry: we show how to solve GPT in subquadratic time when the input points lie on a small number of constant-degree polynomial curves. Many other geometric degeneracy testing problems reduce to 3POL. |
doi_str_mv | 10.1007/s00454-018-0040-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2136319885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2136319885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-9037046da84314c1bb3b97ec3cf2b600e9166b622227e515f11b222b41effc083</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMouFZ_gLeCNyE6s8lmk2MpWoWKh9pz2KRJ3dJ222T3sP_eLCt4ci4zw7z3Bj5C7hGeEKB8jgC84BRQ0jQB7S9IhpzlFDjnlyQDLBUtWCmuyU2MO0giBTIjj6vOnLtqE6q2ttPZftuEuv0-xKlvwrA6E6p0YKv1xy258tU-urvfPiHr15ev-Rtdfi7e57MltQxFSxWwErjYVJIz5BaNYUaVzjLrcyMAnEIhjMhTla7AwiOaNBuOznsLkk3Iw5h7Cs25c7HVu6YLx_RS58gEQyVlkVQ4qmxoYgzO61OoD1XoNYIekOgRiU5I9IBE98mTj56YtMetC3_J_5t-AE4vYZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2136319885</pqid></control><display><type>article</type><title>Subquadratic Algorithms for Algebraic 3SUM</title><source>SpringerLink Journals - AutoHoldings</source><creator>Barba, Luis ; Cardinal, Jean ; Iacono, John ; Langerman, Stefan ; Ooms, Aurélien ; Solomon, Noam</creator><creatorcontrib>Barba, Luis ; Cardinal, Jean ; Iacono, John ; Langerman, Stefan ; Ooms, Aurélien ; Solomon, Noam</creatorcontrib><description>The 3SUM problem asks if an input
n
-set of real numbers contains a triple whose sum is zero. We qualify such a triple of
degenerate
because the probability of finding one in a random input is zero. We consider the 3POL problem, an algebraic generalization of 3SUM where we replace the sum function by a constant-degree polynomial in three variables. The motivations are threefold. Raz et al. gave an
O
(
n
11
/
6
)
upper bound on the number of degenerate triples for the 3POL problem. We give algorithms for the corresponding problem of counting them. Grønlund and Pettie designed subquadratic algorithms for 3SUM. We prove that 3POL admits bounded-degree algebraic decision trees of depth
O
(
n
12
/
7
+
ε
)
, and we prove that 3POL can be solved in
O
(
n
2
(
log
log
n
)
3
/
2
/
(
log
n
)
1
/
2
)
time in the real-RAM model, generalizing their results. Finally, we shed light on the General Position Testing (GPT) problem: “Given
n
points in the plane, do three of them lie on a line?”, a key problem in computational geometry: we show how to solve GPT in subquadratic time when the input points lie on a small number of constant-degree polynomial curves. Many other geometric degeneracy testing problems reduce to 3POL.</description><identifier>ISSN: 0179-5376</identifier><identifier>EISSN: 1432-0444</identifier><identifier>DOI: 10.1007/s00454-018-0040-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Algorithms ; Combinatorics ; Computational geometry ; Computational Mathematics and Numerical Analysis ; Curves ; Decision trees ; Mathematics ; Mathematics and Statistics ; Polynomials ; Real numbers ; Upper bounds</subject><ispartof>Discrete & computational geometry, 2019-06, Vol.61 (4), p.698-734</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Discrete & Computational Geometry is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-9037046da84314c1bb3b97ec3cf2b600e9166b622227e515f11b222b41effc083</citedby><cites>FETCH-LOGICAL-c316t-9037046da84314c1bb3b97ec3cf2b600e9166b622227e515f11b222b41effc083</cites><orcidid>0000-0002-5733-1383</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00454-018-0040-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00454-018-0040-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Barba, Luis</creatorcontrib><creatorcontrib>Cardinal, Jean</creatorcontrib><creatorcontrib>Iacono, John</creatorcontrib><creatorcontrib>Langerman, Stefan</creatorcontrib><creatorcontrib>Ooms, Aurélien</creatorcontrib><creatorcontrib>Solomon, Noam</creatorcontrib><title>Subquadratic Algorithms for Algebraic 3SUM</title><title>Discrete & computational geometry</title><addtitle>Discrete Comput Geom</addtitle><description>The 3SUM problem asks if an input
n
-set of real numbers contains a triple whose sum is zero. We qualify such a triple of
degenerate
because the probability of finding one in a random input is zero. We consider the 3POL problem, an algebraic generalization of 3SUM where we replace the sum function by a constant-degree polynomial in three variables. The motivations are threefold. Raz et al. gave an
O
(
n
11
/
6
)
upper bound on the number of degenerate triples for the 3POL problem. We give algorithms for the corresponding problem of counting them. Grønlund and Pettie designed subquadratic algorithms for 3SUM. We prove that 3POL admits bounded-degree algebraic decision trees of depth
O
(
n
12
/
7
+
ε
)
, and we prove that 3POL can be solved in
O
(
n
2
(
log
log
n
)
3
/
2
/
(
log
n
)
1
/
2
)
time in the real-RAM model, generalizing their results. Finally, we shed light on the General Position Testing (GPT) problem: “Given
n
points in the plane, do three of them lie on a line?”, a key problem in computational geometry: we show how to solve GPT in subquadratic time when the input points lie on a small number of constant-degree polynomial curves. Many other geometric degeneracy testing problems reduce to 3POL.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Combinatorics</subject><subject>Computational geometry</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Curves</subject><subject>Decision trees</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polynomials</subject><subject>Real numbers</subject><subject>Upper bounds</subject><issn>0179-5376</issn><issn>1432-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kEFLAzEQhYMouFZ_gLeCNyE6s8lmk2MpWoWKh9pz2KRJ3dJ222T3sP_eLCt4ci4zw7z3Bj5C7hGeEKB8jgC84BRQ0jQB7S9IhpzlFDjnlyQDLBUtWCmuyU2MO0giBTIjj6vOnLtqE6q2ttPZftuEuv0-xKlvwrA6E6p0YKv1xy258tU-urvfPiHr15ev-Rtdfi7e57MltQxFSxWwErjYVJIz5BaNYUaVzjLrcyMAnEIhjMhTla7AwiOaNBuOznsLkk3Iw5h7Cs25c7HVu6YLx_RS58gEQyVlkVQ4qmxoYgzO61OoD1XoNYIekOgRiU5I9IBE98mTj56YtMetC3_J_5t-AE4vYZQ</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Barba, Luis</creator><creator>Cardinal, Jean</creator><creator>Iacono, John</creator><creator>Langerman, Stefan</creator><creator>Ooms, Aurélien</creator><creator>Solomon, Noam</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-5733-1383</orcidid></search><sort><creationdate>20190601</creationdate><title>Subquadratic Algorithms for Algebraic 3SUM</title><author>Barba, Luis ; Cardinal, Jean ; Iacono, John ; Langerman, Stefan ; Ooms, Aurélien ; Solomon, Noam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-9037046da84314c1bb3b97ec3cf2b600e9166b622227e515f11b222b41effc083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Combinatorics</topic><topic>Computational geometry</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Curves</topic><topic>Decision trees</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polynomials</topic><topic>Real numbers</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barba, Luis</creatorcontrib><creatorcontrib>Cardinal, Jean</creatorcontrib><creatorcontrib>Iacono, John</creatorcontrib><creatorcontrib>Langerman, Stefan</creatorcontrib><creatorcontrib>Ooms, Aurélien</creatorcontrib><creatorcontrib>Solomon, Noam</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Discrete & computational geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barba, Luis</au><au>Cardinal, Jean</au><au>Iacono, John</au><au>Langerman, Stefan</au><au>Ooms, Aurélien</au><au>Solomon, Noam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subquadratic Algorithms for Algebraic 3SUM</atitle><jtitle>Discrete & computational geometry</jtitle><stitle>Discrete Comput Geom</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>61</volume><issue>4</issue><spage>698</spage><epage>734</epage><pages>698-734</pages><issn>0179-5376</issn><eissn>1432-0444</eissn><abstract>The 3SUM problem asks if an input
n
-set of real numbers contains a triple whose sum is zero. We qualify such a triple of
degenerate
because the probability of finding one in a random input is zero. We consider the 3POL problem, an algebraic generalization of 3SUM where we replace the sum function by a constant-degree polynomial in three variables. The motivations are threefold. Raz et al. gave an
O
(
n
11
/
6
)
upper bound on the number of degenerate triples for the 3POL problem. We give algorithms for the corresponding problem of counting them. Grønlund and Pettie designed subquadratic algorithms for 3SUM. We prove that 3POL admits bounded-degree algebraic decision trees of depth
O
(
n
12
/
7
+
ε
)
, and we prove that 3POL can be solved in
O
(
n
2
(
log
log
n
)
3
/
2
/
(
log
n
)
1
/
2
)
time in the real-RAM model, generalizing their results. Finally, we shed light on the General Position Testing (GPT) problem: “Given
n
points in the plane, do three of them lie on a line?”, a key problem in computational geometry: we show how to solve GPT in subquadratic time when the input points lie on a small number of constant-degree polynomial curves. Many other geometric degeneracy testing problems reduce to 3POL.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00454-018-0040-y</doi><tpages>37</tpages><orcidid>https://orcid.org/0000-0002-5733-1383</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0179-5376 |
ispartof | Discrete & computational geometry, 2019-06, Vol.61 (4), p.698-734 |
issn | 0179-5376 1432-0444 |
language | eng |
recordid | cdi_proquest_journals_2136319885 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algebra Algorithms Combinatorics Computational geometry Computational Mathematics and Numerical Analysis Curves Decision trees Mathematics Mathematics and Statistics Polynomials Real numbers Upper bounds |
title | Subquadratic Algorithms for Algebraic 3SUM |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A56%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subquadratic%20Algorithms%20for%20Algebraic%203SUM&rft.jtitle=Discrete%20&%20computational%20geometry&rft.au=Barba,%20Luis&rft.date=2019-06-01&rft.volume=61&rft.issue=4&rft.spage=698&rft.epage=734&rft.pages=698-734&rft.issn=0179-5376&rft.eissn=1432-0444&rft_id=info:doi/10.1007/s00454-018-0040-y&rft_dat=%3Cproquest_cross%3E2136319885%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2136319885&rft_id=info:pmid/&rfr_iscdi=true |