Subquadratic Algorithms for Algebraic 3SUM

The 3SUM problem asks if an input n -set of real numbers contains a triple whose sum is zero. We qualify such a triple of degenerate because the probability of finding one in a random input is zero. We consider the 3POL problem, an algebraic generalization of 3SUM where we replace the sum function b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete & computational geometry 2019-06, Vol.61 (4), p.698-734
Hauptverfasser: Barba, Luis, Cardinal, Jean, Iacono, John, Langerman, Stefan, Ooms, Aurélien, Solomon, Noam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 734
container_issue 4
container_start_page 698
container_title Discrete & computational geometry
container_volume 61
creator Barba, Luis
Cardinal, Jean
Iacono, John
Langerman, Stefan
Ooms, Aurélien
Solomon, Noam
description The 3SUM problem asks if an input n -set of real numbers contains a triple whose sum is zero. We qualify such a triple of degenerate because the probability of finding one in a random input is zero. We consider the 3POL problem, an algebraic generalization of 3SUM where we replace the sum function by a constant-degree polynomial in three variables. The motivations are threefold. Raz et al. gave an O ( n 11 / 6 ) upper bound on the number of degenerate triples for the 3POL problem. We give algorithms for the corresponding problem of counting them. Grønlund and Pettie designed subquadratic algorithms for 3SUM. We prove that 3POL admits bounded-degree algebraic decision trees of depth O ( n 12 / 7 + ε ) , and we prove that 3POL can be solved in O ( n 2 ( log log n ) 3 / 2 / ( log n ) 1 / 2 ) time in the real-RAM model, generalizing their results. Finally, we shed light on the General Position Testing (GPT) problem: “Given n points in the plane, do three of them lie on a line?”, a key problem in computational geometry: we show how to solve GPT in subquadratic time when the input points lie on a small number of constant-degree polynomial curves. Many other geometric degeneracy testing problems reduce to 3POL.
doi_str_mv 10.1007/s00454-018-0040-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2136319885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2136319885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-9037046da84314c1bb3b97ec3cf2b600e9166b622227e515f11b222b41effc083</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMouFZ_gLeCNyE6s8lmk2MpWoWKh9pz2KRJ3dJ222T3sP_eLCt4ci4zw7z3Bj5C7hGeEKB8jgC84BRQ0jQB7S9IhpzlFDjnlyQDLBUtWCmuyU2MO0giBTIjj6vOnLtqE6q2ttPZftuEuv0-xKlvwrA6E6p0YKv1xy258tU-urvfPiHr15ev-Rtdfi7e57MltQxFSxWwErjYVJIz5BaNYUaVzjLrcyMAnEIhjMhTla7AwiOaNBuOznsLkk3Iw5h7Cs25c7HVu6YLx_RS58gEQyVlkVQ4qmxoYgzO61OoD1XoNYIekOgRiU5I9IBE98mTj56YtMetC3_J_5t-AE4vYZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2136319885</pqid></control><display><type>article</type><title>Subquadratic Algorithms for Algebraic 3SUM</title><source>SpringerLink Journals - AutoHoldings</source><creator>Barba, Luis ; Cardinal, Jean ; Iacono, John ; Langerman, Stefan ; Ooms, Aurélien ; Solomon, Noam</creator><creatorcontrib>Barba, Luis ; Cardinal, Jean ; Iacono, John ; Langerman, Stefan ; Ooms, Aurélien ; Solomon, Noam</creatorcontrib><description>The 3SUM problem asks if an input n -set of real numbers contains a triple whose sum is zero. We qualify such a triple of degenerate because the probability of finding one in a random input is zero. We consider the 3POL problem, an algebraic generalization of 3SUM where we replace the sum function by a constant-degree polynomial in three variables. The motivations are threefold. Raz et al. gave an O ( n 11 / 6 ) upper bound on the number of degenerate triples for the 3POL problem. We give algorithms for the corresponding problem of counting them. Grønlund and Pettie designed subquadratic algorithms for 3SUM. We prove that 3POL admits bounded-degree algebraic decision trees of depth O ( n 12 / 7 + ε ) , and we prove that 3POL can be solved in O ( n 2 ( log log n ) 3 / 2 / ( log n ) 1 / 2 ) time in the real-RAM model, generalizing their results. Finally, we shed light on the General Position Testing (GPT) problem: “Given n points in the plane, do three of them lie on a line?”, a key problem in computational geometry: we show how to solve GPT in subquadratic time when the input points lie on a small number of constant-degree polynomial curves. Many other geometric degeneracy testing problems reduce to 3POL.</description><identifier>ISSN: 0179-5376</identifier><identifier>EISSN: 1432-0444</identifier><identifier>DOI: 10.1007/s00454-018-0040-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Algorithms ; Combinatorics ; Computational geometry ; Computational Mathematics and Numerical Analysis ; Curves ; Decision trees ; Mathematics ; Mathematics and Statistics ; Polynomials ; Real numbers ; Upper bounds</subject><ispartof>Discrete &amp; computational geometry, 2019-06, Vol.61 (4), p.698-734</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Discrete &amp; Computational Geometry is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-9037046da84314c1bb3b97ec3cf2b600e9166b622227e515f11b222b41effc083</citedby><cites>FETCH-LOGICAL-c316t-9037046da84314c1bb3b97ec3cf2b600e9166b622227e515f11b222b41effc083</cites><orcidid>0000-0002-5733-1383</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00454-018-0040-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00454-018-0040-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Barba, Luis</creatorcontrib><creatorcontrib>Cardinal, Jean</creatorcontrib><creatorcontrib>Iacono, John</creatorcontrib><creatorcontrib>Langerman, Stefan</creatorcontrib><creatorcontrib>Ooms, Aurélien</creatorcontrib><creatorcontrib>Solomon, Noam</creatorcontrib><title>Subquadratic Algorithms for Algebraic 3SUM</title><title>Discrete &amp; computational geometry</title><addtitle>Discrete Comput Geom</addtitle><description>The 3SUM problem asks if an input n -set of real numbers contains a triple whose sum is zero. We qualify such a triple of degenerate because the probability of finding one in a random input is zero. We consider the 3POL problem, an algebraic generalization of 3SUM where we replace the sum function by a constant-degree polynomial in three variables. The motivations are threefold. Raz et al. gave an O ( n 11 / 6 ) upper bound on the number of degenerate triples for the 3POL problem. We give algorithms for the corresponding problem of counting them. Grønlund and Pettie designed subquadratic algorithms for 3SUM. We prove that 3POL admits bounded-degree algebraic decision trees of depth O ( n 12 / 7 + ε ) , and we prove that 3POL can be solved in O ( n 2 ( log log n ) 3 / 2 / ( log n ) 1 / 2 ) time in the real-RAM model, generalizing their results. Finally, we shed light on the General Position Testing (GPT) problem: “Given n points in the plane, do three of them lie on a line?”, a key problem in computational geometry: we show how to solve GPT in subquadratic time when the input points lie on a small number of constant-degree polynomial curves. Many other geometric degeneracy testing problems reduce to 3POL.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Combinatorics</subject><subject>Computational geometry</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Curves</subject><subject>Decision trees</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polynomials</subject><subject>Real numbers</subject><subject>Upper bounds</subject><issn>0179-5376</issn><issn>1432-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kEFLAzEQhYMouFZ_gLeCNyE6s8lmk2MpWoWKh9pz2KRJ3dJ222T3sP_eLCt4ci4zw7z3Bj5C7hGeEKB8jgC84BRQ0jQB7S9IhpzlFDjnlyQDLBUtWCmuyU2MO0giBTIjj6vOnLtqE6q2ttPZftuEuv0-xKlvwrA6E6p0YKv1xy258tU-urvfPiHr15ev-Rtdfi7e57MltQxFSxWwErjYVJIz5BaNYUaVzjLrcyMAnEIhjMhTla7AwiOaNBuOznsLkk3Iw5h7Cs25c7HVu6YLx_RS58gEQyVlkVQ4qmxoYgzO61OoD1XoNYIekOgRiU5I9IBE98mTj56YtMetC3_J_5t-AE4vYZQ</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Barba, Luis</creator><creator>Cardinal, Jean</creator><creator>Iacono, John</creator><creator>Langerman, Stefan</creator><creator>Ooms, Aurélien</creator><creator>Solomon, Noam</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-5733-1383</orcidid></search><sort><creationdate>20190601</creationdate><title>Subquadratic Algorithms for Algebraic 3SUM</title><author>Barba, Luis ; Cardinal, Jean ; Iacono, John ; Langerman, Stefan ; Ooms, Aurélien ; Solomon, Noam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-9037046da84314c1bb3b97ec3cf2b600e9166b622227e515f11b222b41effc083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Combinatorics</topic><topic>Computational geometry</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Curves</topic><topic>Decision trees</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polynomials</topic><topic>Real numbers</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barba, Luis</creatorcontrib><creatorcontrib>Cardinal, Jean</creatorcontrib><creatorcontrib>Iacono, John</creatorcontrib><creatorcontrib>Langerman, Stefan</creatorcontrib><creatorcontrib>Ooms, Aurélien</creatorcontrib><creatorcontrib>Solomon, Noam</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Discrete &amp; computational geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barba, Luis</au><au>Cardinal, Jean</au><au>Iacono, John</au><au>Langerman, Stefan</au><au>Ooms, Aurélien</au><au>Solomon, Noam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subquadratic Algorithms for Algebraic 3SUM</atitle><jtitle>Discrete &amp; computational geometry</jtitle><stitle>Discrete Comput Geom</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>61</volume><issue>4</issue><spage>698</spage><epage>734</epage><pages>698-734</pages><issn>0179-5376</issn><eissn>1432-0444</eissn><abstract>The 3SUM problem asks if an input n -set of real numbers contains a triple whose sum is zero. We qualify such a triple of degenerate because the probability of finding one in a random input is zero. We consider the 3POL problem, an algebraic generalization of 3SUM where we replace the sum function by a constant-degree polynomial in three variables. The motivations are threefold. Raz et al. gave an O ( n 11 / 6 ) upper bound on the number of degenerate triples for the 3POL problem. We give algorithms for the corresponding problem of counting them. Grønlund and Pettie designed subquadratic algorithms for 3SUM. We prove that 3POL admits bounded-degree algebraic decision trees of depth O ( n 12 / 7 + ε ) , and we prove that 3POL can be solved in O ( n 2 ( log log n ) 3 / 2 / ( log n ) 1 / 2 ) time in the real-RAM model, generalizing their results. Finally, we shed light on the General Position Testing (GPT) problem: “Given n points in the plane, do three of them lie on a line?”, a key problem in computational geometry: we show how to solve GPT in subquadratic time when the input points lie on a small number of constant-degree polynomial curves. Many other geometric degeneracy testing problems reduce to 3POL.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00454-018-0040-y</doi><tpages>37</tpages><orcidid>https://orcid.org/0000-0002-5733-1383</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0179-5376
ispartof Discrete & computational geometry, 2019-06, Vol.61 (4), p.698-734
issn 0179-5376
1432-0444
language eng
recordid cdi_proquest_journals_2136319885
source SpringerLink Journals - AutoHoldings
subjects Algebra
Algorithms
Combinatorics
Computational geometry
Computational Mathematics and Numerical Analysis
Curves
Decision trees
Mathematics
Mathematics and Statistics
Polynomials
Real numbers
Upper bounds
title Subquadratic Algorithms for Algebraic 3SUM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A56%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subquadratic%20Algorithms%20for%20Algebraic%203SUM&rft.jtitle=Discrete%20&%20computational%20geometry&rft.au=Barba,%20Luis&rft.date=2019-06-01&rft.volume=61&rft.issue=4&rft.spage=698&rft.epage=734&rft.pages=698-734&rft.issn=0179-5376&rft.eissn=1432-0444&rft_id=info:doi/10.1007/s00454-018-0040-y&rft_dat=%3Cproquest_cross%3E2136319885%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2136319885&rft_id=info:pmid/&rfr_iscdi=true