Enhancing performance of magnetized liner inertial fusion at the Z facility

The Magnetized Liner Inertial Fusion concept (MagLIF) [Slutz et al., Phys. Plasmas 17, 056303 (2010)] is being studied on the Z facility at Sandia National Laboratories. Neutron yields greater than 1012 have been achieved with a drive current in the range of 17–18 MA and pure deuterium fuel [Gomez e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2018-11, Vol.25 (11)
Hauptverfasser: Slutz, S. A., Gomez, M. R., Hansen, S. B., Harding, E. C., Hutsel, B. T., Knapp, P. F., Lamppa, D. C., Awe, T. J., Ampleford, D. J., Bliss, D. E., Chandler, G. A., Cuneo, M. E., Geissel, M., Glinsky, M. E., Harvey-Thompson, A. J., Hess, M. H., Jennings, C. A., Jones, B., Laity, G. R., Martin, M. R., Peterson, K. J., Porter, J. L., Rambo, P. K., Rochau, G. A., Ruiz, C. L., Savage, M. E., Schwarz, J., Schmit, P. F., Shipley, G., Sinars, D. B., Smith, I. C., Vesey, R. A., Weis, M. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page
container_title Physics of plasmas
container_volume 25
creator Slutz, S. A.
Gomez, M. R.
Hansen, S. B.
Harding, E. C.
Hutsel, B. T.
Knapp, P. F.
Lamppa, D. C.
Awe, T. J.
Ampleford, D. J.
Bliss, D. E.
Chandler, G. A.
Cuneo, M. E.
Geissel, M.
Glinsky, M. E.
Harvey-Thompson, A. J.
Hess, M. H.
Jennings, C. A.
Jones, B.
Laity, G. R.
Martin, M. R.
Peterson, K. J.
Porter, J. L.
Rambo, P. K.
Rochau, G. A.
Ruiz, C. L.
Savage, M. E.
Schwarz, J.
Schmit, P. F.
Shipley, G.
Sinars, D. B.
Smith, I. C.
Vesey, R. A.
Weis, M. R.
description The Magnetized Liner Inertial Fusion concept (MagLIF) [Slutz et al., Phys. Plasmas 17, 056303 (2010)] is being studied on the Z facility at Sandia National Laboratories. Neutron yields greater than 1012 have been achieved with a drive current in the range of 17–18 MA and pure deuterium fuel [Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)]. We show that 2D simulated yields are about twice the best yields obtained on Z and that a likely cause of this difference is the mix of material into the fuel. Mitigation strategies are presented. Previous numerical studies indicate that much larger yields (10–1000 MJ) should be possible with pulsed power machines producing larger drive currents (45–60 MA) than can be produced by the Z machine [Slutz et al., Phys. Plasmas 23, 022702 (2016)]. To test the accuracy of these 2D simulations, we present modifications to MagLIF experiments using the existing Z facility, for which 2D simulations predict a 100-fold enhancement of MagLIF fusion yields and considerable increases in burn temperatures. Experimental verification of these predictions would increase the credibility of predictions at higher drive currents.
doi_str_mv 10.1063/1.5054317
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_journals_2136286162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2136286162</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-628106ae48d35d72e02ba6ddcf91cdb89a0543aaea5a02e34aac97a2930cb3b23</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhosoOKcX_oOgVwqdSZOm7aWM-YEDbxTEm3CaJltGl8wkE-avt6VDLwRvzgc8vOc9b5KcEzwhmNMbMslxzigpDpIRwWWVFrxgh_1c4JRz9nacnISwwhgznpej5Glml2ClsQu0UV47v-42hZxGa1hYFc2XalBrrPKoL9FAi_Q2GGcRRBSXCr0jDdK0Ju5OkyMNbVBn-z5OXu9mL9OHdP58_zi9naeSllVMeVZ2VkGxsqF5U2QKZzXwppG6IrKpywr6DwAU5IAzRRmArArIKoplTeuMjpOLQdeFaESQJiq5lM5aJaMgrCwY4R10OUAb7z62KkSxcltvO18iI7TzwAnvpa4GSnoXgldabLxZg98JgkUfqCBiH2jHXg9sfxFiF8EP_On8Lyg2jf4P_qv8DeaDg4A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2136286162</pqid></control><display><type>article</type><title>Enhancing performance of magnetized liner inertial fusion at the Z facility</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Slutz, S. A. ; Gomez, M. R. ; Hansen, S. B. ; Harding, E. C. ; Hutsel, B. T. ; Knapp, P. F. ; Lamppa, D. C. ; Awe, T. J. ; Ampleford, D. J. ; Bliss, D. E. ; Chandler, G. A. ; Cuneo, M. E. ; Geissel, M. ; Glinsky, M. E. ; Harvey-Thompson, A. J. ; Hess, M. H. ; Jennings, C. A. ; Jones, B. ; Laity, G. R. ; Martin, M. R. ; Peterson, K. J. ; Porter, J. L. ; Rambo, P. K. ; Rochau, G. A. ; Ruiz, C. L. ; Savage, M. E. ; Schwarz, J. ; Schmit, P. F. ; Shipley, G. ; Sinars, D. B. ; Smith, I. C. ; Vesey, R. A. ; Weis, M. R.</creator><creatorcontrib>Slutz, S. A. ; Gomez, M. R. ; Hansen, S. B. ; Harding, E. C. ; Hutsel, B. T. ; Knapp, P. F. ; Lamppa, D. C. ; Awe, T. J. ; Ampleford, D. J. ; Bliss, D. E. ; Chandler, G. A. ; Cuneo, M. E. ; Geissel, M. ; Glinsky, M. E. ; Harvey-Thompson, A. J. ; Hess, M. H. ; Jennings, C. A. ; Jones, B. ; Laity, G. R. ; Martin, M. R. ; Peterson, K. J. ; Porter, J. L. ; Rambo, P. K. ; Rochau, G. A. ; Ruiz, C. L. ; Savage, M. E. ; Schwarz, J. ; Schmit, P. F. ; Shipley, G. ; Sinars, D. B. ; Smith, I. C. ; Vesey, R. A. ; Weis, M. R. ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>The Magnetized Liner Inertial Fusion concept (MagLIF) [Slutz et al., Phys. Plasmas 17, 056303 (2010)] is being studied on the Z facility at Sandia National Laboratories. Neutron yields greater than 1012 have been achieved with a drive current in the range of 17–18 MA and pure deuterium fuel [Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)]. We show that 2D simulated yields are about twice the best yields obtained on Z and that a likely cause of this difference is the mix of material into the fuel. Mitigation strategies are presented. Previous numerical studies indicate that much larger yields (10–1000 MJ) should be possible with pulsed power machines producing larger drive currents (45–60 MA) than can be produced by the Z machine [Slutz et al., Phys. Plasmas 23, 022702 (2016)]. To test the accuracy of these 2D simulations, we present modifications to MagLIF experiments using the existing Z facility, for which 2D simulations predict a 100-fold enhancement of MagLIF fusion yields and considerable increases in burn temperatures. Experimental verification of these predictions would increase the credibility of predictions at higher drive currents.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.5054317</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; Computer simulation ; Deuterium ; Inertial fusion (reactor) ; Plasma physics ; Plasmas (physics)</subject><ispartof>Physics of plasmas, 2018-11, Vol.25 (11)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-628106ae48d35d72e02ba6ddcf91cdb89a0543aaea5a02e34aac97a2930cb3b23</citedby><cites>FETCH-LOGICAL-c389t-628106ae48d35d72e02ba6ddcf91cdb89a0543aaea5a02e34aac97a2930cb3b23</cites><orcidid>0000-0002-6207-7615 ; 0000-0002-0536-4001 ; 0000-0001-5036-0969 ; 0000-0002-1967-7113 ; 0000-0001-6383-1184 ; 0000-0001-6202-4292 ; 0000-0002-3742-2421 ; 0000-0002-3009-8673 ; 0000-0003-0061-5323 ; 0000000205364001 ; 0000000262077615 ; 0000000237422421 ; 0000000300615323 ; 0000000162024292 ; 0000000230098673 ; 0000000163831184 ; 0000000219677113 ; 0000000150360969</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/1.5054317$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1487416$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Slutz, S. A.</creatorcontrib><creatorcontrib>Gomez, M. R.</creatorcontrib><creatorcontrib>Hansen, S. B.</creatorcontrib><creatorcontrib>Harding, E. C.</creatorcontrib><creatorcontrib>Hutsel, B. T.</creatorcontrib><creatorcontrib>Knapp, P. F.</creatorcontrib><creatorcontrib>Lamppa, D. C.</creatorcontrib><creatorcontrib>Awe, T. J.</creatorcontrib><creatorcontrib>Ampleford, D. J.</creatorcontrib><creatorcontrib>Bliss, D. E.</creatorcontrib><creatorcontrib>Chandler, G. A.</creatorcontrib><creatorcontrib>Cuneo, M. E.</creatorcontrib><creatorcontrib>Geissel, M.</creatorcontrib><creatorcontrib>Glinsky, M. E.</creatorcontrib><creatorcontrib>Harvey-Thompson, A. J.</creatorcontrib><creatorcontrib>Hess, M. H.</creatorcontrib><creatorcontrib>Jennings, C. A.</creatorcontrib><creatorcontrib>Jones, B.</creatorcontrib><creatorcontrib>Laity, G. R.</creatorcontrib><creatorcontrib>Martin, M. R.</creatorcontrib><creatorcontrib>Peterson, K. J.</creatorcontrib><creatorcontrib>Porter, J. L.</creatorcontrib><creatorcontrib>Rambo, P. K.</creatorcontrib><creatorcontrib>Rochau, G. A.</creatorcontrib><creatorcontrib>Ruiz, C. L.</creatorcontrib><creatorcontrib>Savage, M. E.</creatorcontrib><creatorcontrib>Schwarz, J.</creatorcontrib><creatorcontrib>Schmit, P. F.</creatorcontrib><creatorcontrib>Shipley, G.</creatorcontrib><creatorcontrib>Sinars, D. B.</creatorcontrib><creatorcontrib>Smith, I. C.</creatorcontrib><creatorcontrib>Vesey, R. A.</creatorcontrib><creatorcontrib>Weis, M. R.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Enhancing performance of magnetized liner inertial fusion at the Z facility</title><title>Physics of plasmas</title><description>The Magnetized Liner Inertial Fusion concept (MagLIF) [Slutz et al., Phys. Plasmas 17, 056303 (2010)] is being studied on the Z facility at Sandia National Laboratories. Neutron yields greater than 1012 have been achieved with a drive current in the range of 17–18 MA and pure deuterium fuel [Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)]. We show that 2D simulated yields are about twice the best yields obtained on Z and that a likely cause of this difference is the mix of material into the fuel. Mitigation strategies are presented. Previous numerical studies indicate that much larger yields (10–1000 MJ) should be possible with pulsed power machines producing larger drive currents (45–60 MA) than can be produced by the Z machine [Slutz et al., Phys. Plasmas 23, 022702 (2016)]. To test the accuracy of these 2D simulations, we present modifications to MagLIF experiments using the existing Z facility, for which 2D simulations predict a 100-fold enhancement of MagLIF fusion yields and considerable increases in burn temperatures. Experimental verification of these predictions would increase the credibility of predictions at higher drive currents.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>Computer simulation</subject><subject>Deuterium</subject><subject>Inertial fusion (reactor)</subject><subject>Plasma physics</subject><subject>Plasmas (physics)</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhosoOKcX_oOgVwqdSZOm7aWM-YEDbxTEm3CaJltGl8wkE-avt6VDLwRvzgc8vOc9b5KcEzwhmNMbMslxzigpDpIRwWWVFrxgh_1c4JRz9nacnISwwhgznpej5Glml2ClsQu0UV47v-42hZxGa1hYFc2XalBrrPKoL9FAi_Q2GGcRRBSXCr0jDdK0Ju5OkyMNbVBn-z5OXu9mL9OHdP58_zi9naeSllVMeVZ2VkGxsqF5U2QKZzXwppG6IrKpywr6DwAU5IAzRRmArArIKoplTeuMjpOLQdeFaESQJiq5lM5aJaMgrCwY4R10OUAb7z62KkSxcltvO18iI7TzwAnvpa4GSnoXgldabLxZg98JgkUfqCBiH2jHXg9sfxFiF8EP_On8Lyg2jf4P_qv8DeaDg4A</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Slutz, S. A.</creator><creator>Gomez, M. R.</creator><creator>Hansen, S. B.</creator><creator>Harding, E. C.</creator><creator>Hutsel, B. T.</creator><creator>Knapp, P. F.</creator><creator>Lamppa, D. C.</creator><creator>Awe, T. J.</creator><creator>Ampleford, D. J.</creator><creator>Bliss, D. E.</creator><creator>Chandler, G. A.</creator><creator>Cuneo, M. E.</creator><creator>Geissel, M.</creator><creator>Glinsky, M. E.</creator><creator>Harvey-Thompson, A. J.</creator><creator>Hess, M. H.</creator><creator>Jennings, C. A.</creator><creator>Jones, B.</creator><creator>Laity, G. R.</creator><creator>Martin, M. R.</creator><creator>Peterson, K. J.</creator><creator>Porter, J. L.</creator><creator>Rambo, P. K.</creator><creator>Rochau, G. A.</creator><creator>Ruiz, C. L.</creator><creator>Savage, M. E.</creator><creator>Schwarz, J.</creator><creator>Schmit, P. F.</creator><creator>Shipley, G.</creator><creator>Sinars, D. B.</creator><creator>Smith, I. C.</creator><creator>Vesey, R. A.</creator><creator>Weis, M. R.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6207-7615</orcidid><orcidid>https://orcid.org/0000-0002-0536-4001</orcidid><orcidid>https://orcid.org/0000-0001-5036-0969</orcidid><orcidid>https://orcid.org/0000-0002-1967-7113</orcidid><orcidid>https://orcid.org/0000-0001-6383-1184</orcidid><orcidid>https://orcid.org/0000-0001-6202-4292</orcidid><orcidid>https://orcid.org/0000-0002-3742-2421</orcidid><orcidid>https://orcid.org/0000-0002-3009-8673</orcidid><orcidid>https://orcid.org/0000-0003-0061-5323</orcidid><orcidid>https://orcid.org/0000000205364001</orcidid><orcidid>https://orcid.org/0000000262077615</orcidid><orcidid>https://orcid.org/0000000237422421</orcidid><orcidid>https://orcid.org/0000000300615323</orcidid><orcidid>https://orcid.org/0000000162024292</orcidid><orcidid>https://orcid.org/0000000230098673</orcidid><orcidid>https://orcid.org/0000000163831184</orcidid><orcidid>https://orcid.org/0000000219677113</orcidid><orcidid>https://orcid.org/0000000150360969</orcidid></search><sort><creationdate>20181101</creationdate><title>Enhancing performance of magnetized liner inertial fusion at the Z facility</title><author>Slutz, S. A. ; Gomez, M. R. ; Hansen, S. B. ; Harding, E. C. ; Hutsel, B. T. ; Knapp, P. F. ; Lamppa, D. C. ; Awe, T. J. ; Ampleford, D. J. ; Bliss, D. E. ; Chandler, G. A. ; Cuneo, M. E. ; Geissel, M. ; Glinsky, M. E. ; Harvey-Thompson, A. J. ; Hess, M. H. ; Jennings, C. A. ; Jones, B. ; Laity, G. R. ; Martin, M. R. ; Peterson, K. J. ; Porter, J. L. ; Rambo, P. K. ; Rochau, G. A. ; Ruiz, C. L. ; Savage, M. E. ; Schwarz, J. ; Schmit, P. F. ; Shipley, G. ; Sinars, D. B. ; Smith, I. C. ; Vesey, R. A. ; Weis, M. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-628106ae48d35d72e02ba6ddcf91cdb89a0543aaea5a02e34aac97a2930cb3b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>Computer simulation</topic><topic>Deuterium</topic><topic>Inertial fusion (reactor)</topic><topic>Plasma physics</topic><topic>Plasmas (physics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Slutz, S. A.</creatorcontrib><creatorcontrib>Gomez, M. R.</creatorcontrib><creatorcontrib>Hansen, S. B.</creatorcontrib><creatorcontrib>Harding, E. C.</creatorcontrib><creatorcontrib>Hutsel, B. T.</creatorcontrib><creatorcontrib>Knapp, P. F.</creatorcontrib><creatorcontrib>Lamppa, D. C.</creatorcontrib><creatorcontrib>Awe, T. J.</creatorcontrib><creatorcontrib>Ampleford, D. J.</creatorcontrib><creatorcontrib>Bliss, D. E.</creatorcontrib><creatorcontrib>Chandler, G. A.</creatorcontrib><creatorcontrib>Cuneo, M. E.</creatorcontrib><creatorcontrib>Geissel, M.</creatorcontrib><creatorcontrib>Glinsky, M. E.</creatorcontrib><creatorcontrib>Harvey-Thompson, A. J.</creatorcontrib><creatorcontrib>Hess, M. H.</creatorcontrib><creatorcontrib>Jennings, C. A.</creatorcontrib><creatorcontrib>Jones, B.</creatorcontrib><creatorcontrib>Laity, G. R.</creatorcontrib><creatorcontrib>Martin, M. R.</creatorcontrib><creatorcontrib>Peterson, K. J.</creatorcontrib><creatorcontrib>Porter, J. L.</creatorcontrib><creatorcontrib>Rambo, P. K.</creatorcontrib><creatorcontrib>Rochau, G. A.</creatorcontrib><creatorcontrib>Ruiz, C. L.</creatorcontrib><creatorcontrib>Savage, M. E.</creatorcontrib><creatorcontrib>Schwarz, J.</creatorcontrib><creatorcontrib>Schmit, P. F.</creatorcontrib><creatorcontrib>Shipley, G.</creatorcontrib><creatorcontrib>Sinars, D. B.</creatorcontrib><creatorcontrib>Smith, I. C.</creatorcontrib><creatorcontrib>Vesey, R. A.</creatorcontrib><creatorcontrib>Weis, M. R.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Slutz, S. A.</au><au>Gomez, M. R.</au><au>Hansen, S. B.</au><au>Harding, E. C.</au><au>Hutsel, B. T.</au><au>Knapp, P. F.</au><au>Lamppa, D. C.</au><au>Awe, T. J.</au><au>Ampleford, D. J.</au><au>Bliss, D. E.</au><au>Chandler, G. A.</au><au>Cuneo, M. E.</au><au>Geissel, M.</au><au>Glinsky, M. E.</au><au>Harvey-Thompson, A. J.</au><au>Hess, M. H.</au><au>Jennings, C. A.</au><au>Jones, B.</au><au>Laity, G. R.</au><au>Martin, M. R.</au><au>Peterson, K. J.</au><au>Porter, J. L.</au><au>Rambo, P. K.</au><au>Rochau, G. A.</au><au>Ruiz, C. L.</au><au>Savage, M. E.</au><au>Schwarz, J.</au><au>Schmit, P. F.</au><au>Shipley, G.</au><au>Sinars, D. B.</au><au>Smith, I. C.</au><au>Vesey, R. A.</au><au>Weis, M. R.</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing performance of magnetized liner inertial fusion at the Z facility</atitle><jtitle>Physics of plasmas</jtitle><date>2018-11-01</date><risdate>2018</risdate><volume>25</volume><issue>11</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>The Magnetized Liner Inertial Fusion concept (MagLIF) [Slutz et al., Phys. Plasmas 17, 056303 (2010)] is being studied on the Z facility at Sandia National Laboratories. Neutron yields greater than 1012 have been achieved with a drive current in the range of 17–18 MA and pure deuterium fuel [Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)]. We show that 2D simulated yields are about twice the best yields obtained on Z and that a likely cause of this difference is the mix of material into the fuel. Mitigation strategies are presented. Previous numerical studies indicate that much larger yields (10–1000 MJ) should be possible with pulsed power machines producing larger drive currents (45–60 MA) than can be produced by the Z machine [Slutz et al., Phys. Plasmas 23, 022702 (2016)]. To test the accuracy of these 2D simulations, we present modifications to MagLIF experiments using the existing Z facility, for which 2D simulations predict a 100-fold enhancement of MagLIF fusion yields and considerable increases in burn temperatures. Experimental verification of these predictions would increase the credibility of predictions at higher drive currents.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5054317</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-6207-7615</orcidid><orcidid>https://orcid.org/0000-0002-0536-4001</orcidid><orcidid>https://orcid.org/0000-0001-5036-0969</orcidid><orcidid>https://orcid.org/0000-0002-1967-7113</orcidid><orcidid>https://orcid.org/0000-0001-6383-1184</orcidid><orcidid>https://orcid.org/0000-0001-6202-4292</orcidid><orcidid>https://orcid.org/0000-0002-3742-2421</orcidid><orcidid>https://orcid.org/0000-0002-3009-8673</orcidid><orcidid>https://orcid.org/0000-0003-0061-5323</orcidid><orcidid>https://orcid.org/0000000205364001</orcidid><orcidid>https://orcid.org/0000000262077615</orcidid><orcidid>https://orcid.org/0000000237422421</orcidid><orcidid>https://orcid.org/0000000300615323</orcidid><orcidid>https://orcid.org/0000000162024292</orcidid><orcidid>https://orcid.org/0000000230098673</orcidid><orcidid>https://orcid.org/0000000163831184</orcidid><orcidid>https://orcid.org/0000000219677113</orcidid><orcidid>https://orcid.org/0000000150360969</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2018-11, Vol.25 (11)
issn 1070-664X
1089-7674
language eng
recordid cdi_proquest_journals_2136286162
source AIP Journals Complete; Alma/SFX Local Collection
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
Computer simulation
Deuterium
Inertial fusion (reactor)
Plasma physics
Plasmas (physics)
title Enhancing performance of magnetized liner inertial fusion at the Z facility
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T11%3A43%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20performance%20of%20magnetized%20liner%20inertial%20fusion%20at%20the%20Z%20facility&rft.jtitle=Physics%20of%20plasmas&rft.au=Slutz,%20S.%20A.&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2018-11-01&rft.volume=25&rft.issue=11&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/1.5054317&rft_dat=%3Cproquest_osti_%3E2136286162%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2136286162&rft_id=info:pmid/&rfr_iscdi=true