Using Sentiment Induction to Understand Variation in Gendered Online Communities

We analyze gendered communities defined in three different ways: text, users, and sentiment. Differences across these representations reveal facets of communities' distinctive identities, such as social group, topic, and attitudes. Two communities may have high text similarity but not user simi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-11
Hauptverfasser: Li, Lucy, Mendelsohn, Julia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Li, Lucy
Mendelsohn, Julia
description We analyze gendered communities defined in three different ways: text, users, and sentiment. Differences across these representations reveal facets of communities' distinctive identities, such as social group, topic, and attitudes. Two communities may have high text similarity but not user similarity or vice versa, and word usage also does not vary according to a clearcut, binary perspective of gender. Community-specific sentiment lexicons demonstrate that sentiment can be a useful indicator of words' social meaning and community values, especially in the context of discussion content and user demographics. Our results show that social platforms such as Reddit are active settings for different constructions of gender.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2135830110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2135830110</sourcerecordid><originalsourceid>FETCH-proquest_journals_21358301103</originalsourceid><addsrcrecordid>eNqNiskKwjAURYMgWLT_EHBdyGC1--K0UnDYlmCe8kr7ohn-3yp-gJt74Jw7YpnSWhbVQqkJy0NohRBquVJlqTN2vASkBz8BReyH4Xuy6RbREY-OX8iCD9GQ5Vfj0Xw9Et_CJ4DlB-qQgNeu7xNhRAgzNr6bLkD-45TNN-tzvSue3r0ShNi0LnkaUqOkListpBT6v9cbg1c_Hg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2135830110</pqid></control><display><type>article</type><title>Using Sentiment Induction to Understand Variation in Gendered Online Communities</title><source>Freely Accessible Journals</source><creator>Li, Lucy ; Mendelsohn, Julia</creator><creatorcontrib>Li, Lucy ; Mendelsohn, Julia</creatorcontrib><description>We analyze gendered communities defined in three different ways: text, users, and sentiment. Differences across these representations reveal facets of communities' distinctive identities, such as social group, topic, and attitudes. Two communities may have high text similarity but not user similarity or vice versa, and word usage also does not vary according to a clearcut, binary perspective of gender. Community-specific sentiment lexicons demonstrate that sentiment can be a useful indicator of words' social meaning and community values, especially in the context of discussion content and user demographics. Our results show that social platforms such as Reddit are active settings for different constructions of gender.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Clearcutting ; Demographics ; Similarity</subject><ispartof>arXiv.org, 2018-11</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Li, Lucy</creatorcontrib><creatorcontrib>Mendelsohn, Julia</creatorcontrib><title>Using Sentiment Induction to Understand Variation in Gendered Online Communities</title><title>arXiv.org</title><description>We analyze gendered communities defined in three different ways: text, users, and sentiment. Differences across these representations reveal facets of communities' distinctive identities, such as social group, topic, and attitudes. Two communities may have high text similarity but not user similarity or vice versa, and word usage also does not vary according to a clearcut, binary perspective of gender. Community-specific sentiment lexicons demonstrate that sentiment can be a useful indicator of words' social meaning and community values, especially in the context of discussion content and user demographics. Our results show that social platforms such as Reddit are active settings for different constructions of gender.</description><subject>Clearcutting</subject><subject>Demographics</subject><subject>Similarity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNiskKwjAURYMgWLT_EHBdyGC1--K0UnDYlmCe8kr7ohn-3yp-gJt74Jw7YpnSWhbVQqkJy0NohRBquVJlqTN2vASkBz8BReyH4Xuy6RbREY-OX8iCD9GQ5Vfj0Xw9Et_CJ4DlB-qQgNeu7xNhRAgzNr6bLkD-45TNN-tzvSue3r0ShNi0LnkaUqOkListpBT6v9cbg1c_Hg</recordid><startdate>20181116</startdate><enddate>20181116</enddate><creator>Li, Lucy</creator><creator>Mendelsohn, Julia</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20181116</creationdate><title>Using Sentiment Induction to Understand Variation in Gendered Online Communities</title><author>Li, Lucy ; Mendelsohn, Julia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21358301103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Clearcutting</topic><topic>Demographics</topic><topic>Similarity</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Lucy</creatorcontrib><creatorcontrib>Mendelsohn, Julia</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Lucy</au><au>Mendelsohn, Julia</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Using Sentiment Induction to Understand Variation in Gendered Online Communities</atitle><jtitle>arXiv.org</jtitle><date>2018-11-16</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>We analyze gendered communities defined in three different ways: text, users, and sentiment. Differences across these representations reveal facets of communities' distinctive identities, such as social group, topic, and attitudes. Two communities may have high text similarity but not user similarity or vice versa, and word usage also does not vary according to a clearcut, binary perspective of gender. Community-specific sentiment lexicons demonstrate that sentiment can be a useful indicator of words' social meaning and community values, especially in the context of discussion content and user demographics. Our results show that social platforms such as Reddit are active settings for different constructions of gender.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2018-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2135830110
source Freely Accessible Journals
subjects Clearcutting
Demographics
Similarity
title Using Sentiment Induction to Understand Variation in Gendered Online Communities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T00%3A16%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Using%20Sentiment%20Induction%20to%20Understand%20Variation%20in%20Gendered%20Online%20Communities&rft.jtitle=arXiv.org&rft.au=Li,%20Lucy&rft.date=2018-11-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2135830110%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2135830110&rft_id=info:pmid/&rfr_iscdi=true