A Tunable Diode Based on an Inorganic Semiconductor Conjugated Polymer Interface
Although in principle semiconductor-metal (Schottky) diodes should be tunable by changing the work function of the metal, such flexibility cannot be achieved in a single device and in practice is often limited by interfacial states that cause Fermi-level pinning. A tunable diode is reported based on...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 1997-12, Vol.278 (5346), p.2103-2106 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2106 |
---|---|
container_issue | 5346 |
container_start_page | 2103 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 278 |
creator | Lonergan, Mark C. |
description | Although in principle semiconductor-metal (Schottky) diodes should be tunable by changing the work function of the metal, such flexibility cannot be achieved in a single device and in practice is often limited by interfacial states that cause Fermi-level pinning. A tunable diode is reported based on a hybrid inorganic-organic, n-indium phosphide|poly(pyrrole)|nonaqueous electrolyte architecture. By electrochemically manipulating the work function of the conjugated polymer poly(pyrrole), the turn-on voltage (more precisely, the forward bias potential required to pass a particular current) of the diode can be continuously and actively tuned by more than 0.6 volt. The work highlights a distinguishing feature of conjugated polymers relative to more traditional semiconductor materials, namely, the ability of dopant ions to permeate conjugated polymers, thereby enabling electrochemical manipulation. |
doi_str_mv | 10.1126/science.278.5346.2103 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_213576492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A20106386</galeid><jstor_id>2893939</jstor_id><sourcerecordid>A20106386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-b82ad040ffcddfcd420ae896fc264f9e6aa7be606b43e4f65081c4b3270767863</originalsourceid><addsrcrecordid>eNqN0l1r2zAUBmAxNrq02z9YwYxd9KLO9GXZvkyzLQuEpdBut0KWj4yDI7WSDeu_nzKbjrBeBCEEOs-REHoRuiR4TggVn4NuwWqY07yYZ4yLOSWYvUIzgsssLSlmr9EMYybSAufZW3Qewg7jWCvZGTorOY49dIZuF8n9YFXVQfKldTUkNypAnTibKJusrfONsq1O7mDfamfrQffOJ0tnd0Oj-ghvXfe0Bx9pD94oDe_QG6O6AO-n9QL9_Pb1fvk93WxX6-Vik-qM4z6tCqpqzLExuq7j5BQrKEphNBXclCCUyisQWFScATciwwXRvGI0x7nIC8Eu0Mfx3AfvHgcIvdy5wdt4paSEZbngJY3oekSN6kC21rjeK92ABa86Z8G0cXtBMcGC_T0zfYHHUY_P_99fHflIevjdN2oIQa7vfpxMt79OpjerU2mx2hzR65eodl0HDcj4N8vtEc9Grr0LwYORD77dK_8kCZaH_MkpfzLmTx7yJw_5i32X07cM1R7q564pcLH-aaqroFVnvLK6Dc-MEs54drj-w8h2IQbuX7ko2WH8AdnL6Ec</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213576492</pqid></control><display><type>article</type><title>A Tunable Diode Based on an Inorganic Semiconductor Conjugated Polymer Interface</title><source>Science Magazine</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Lonergan, Mark C.</creator><creatorcontrib>Lonergan, Mark C.</creatorcontrib><description>Although in principle semiconductor-metal (Schottky) diodes should be tunable by changing the work function of the metal, such flexibility cannot be achieved in a single device and in practice is often limited by interfacial states that cause Fermi-level pinning. A tunable diode is reported based on a hybrid inorganic-organic, n-indium phosphide|poly(pyrrole)|nonaqueous electrolyte architecture. By electrochemically manipulating the work function of the conjugated polymer poly(pyrrole), the turn-on voltage (more precisely, the forward bias potential required to pass a particular current) of the diode can be continuously and actively tuned by more than 0.6 volt. The work highlights a distinguishing feature of conjugated polymers relative to more traditional semiconductor materials, namely, the ability of dopant ions to permeate conjugated polymers, thereby enabling electrochemical manipulation.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.278.5346.2103</identifier><identifier>PMID: 9405342</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Society for the Advancement of Science</publisher><subject>Applied sciences ; Charge transfer ; Conducting polymers ; Diodes ; Diodes, Schottky-barrier ; Electric current ; Electric potential ; Electrodes ; Electrolytes ; Electronics ; Exact sciences and technology ; Organic conductors ; Organic semiconductors ; Polymers ; Schottky diodes ; Semiconductor diodes ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Semiconductors</subject><ispartof>Science (American Association for the Advancement of Science), 1997-12, Vol.278 (5346), p.2103-2106</ispartof><rights>Copyright 1997 American Association for the Advancement of Science</rights><rights>1998 INIST-CNRS</rights><rights>COPYRIGHT 1997 American Association for the Advancement of Science</rights><rights>COPYRIGHT 1997 American Association for the Advancement of Science</rights><rights>Copyright American Association for the Advancement of Science Dec 19, 1997</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-b82ad040ffcddfcd420ae896fc264f9e6aa7be606b43e4f65081c4b3270767863</citedby><cites>FETCH-LOGICAL-c540t-b82ad040ffcddfcd420ae896fc264f9e6aa7be606b43e4f65081c4b3270767863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2893939$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2893939$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,781,785,804,2885,2886,27929,27930,58022,58255</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2143456$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9405342$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lonergan, Mark C.</creatorcontrib><title>A Tunable Diode Based on an Inorganic Semiconductor Conjugated Polymer Interface</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Although in principle semiconductor-metal (Schottky) diodes should be tunable by changing the work function of the metal, such flexibility cannot be achieved in a single device and in practice is often limited by interfacial states that cause Fermi-level pinning. A tunable diode is reported based on a hybrid inorganic-organic, n-indium phosphide|poly(pyrrole)|nonaqueous electrolyte architecture. By electrochemically manipulating the work function of the conjugated polymer poly(pyrrole), the turn-on voltage (more precisely, the forward bias potential required to pass a particular current) of the diode can be continuously and actively tuned by more than 0.6 volt. The work highlights a distinguishing feature of conjugated polymers relative to more traditional semiconductor materials, namely, the ability of dopant ions to permeate conjugated polymers, thereby enabling electrochemical manipulation.</description><subject>Applied sciences</subject><subject>Charge transfer</subject><subject>Conducting polymers</subject><subject>Diodes</subject><subject>Diodes, Schottky-barrier</subject><subject>Electric current</subject><subject>Electric potential</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Organic conductors</subject><subject>Organic semiconductors</subject><subject>Polymers</subject><subject>Schottky diodes</subject><subject>Semiconductor diodes</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Semiconductors</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqN0l1r2zAUBmAxNrq02z9YwYxd9KLO9GXZvkyzLQuEpdBut0KWj4yDI7WSDeu_nzKbjrBeBCEEOs-REHoRuiR4TggVn4NuwWqY07yYZ4yLOSWYvUIzgsssLSlmr9EMYybSAufZW3Qewg7jWCvZGTorOY49dIZuF8n9YFXVQfKldTUkNypAnTibKJusrfONsq1O7mDfamfrQffOJ0tnd0Oj-ghvXfe0Bx9pD94oDe_QG6O6AO-n9QL9_Pb1fvk93WxX6-Vik-qM4z6tCqpqzLExuq7j5BQrKEphNBXclCCUyisQWFScATciwwXRvGI0x7nIC8Eu0Mfx3AfvHgcIvdy5wdt4paSEZbngJY3oekSN6kC21rjeK92ABa86Z8G0cXtBMcGC_T0zfYHHUY_P_99fHflIevjdN2oIQa7vfpxMt79OpjerU2mx2hzR65eodl0HDcj4N8vtEc9Grr0LwYORD77dK_8kCZaH_MkpfzLmTx7yJw_5i32X07cM1R7q564pcLH-aaqroFVnvLK6Dc-MEs54drj-w8h2IQbuX7ko2WH8AdnL6Ec</recordid><startdate>19971219</startdate><enddate>19971219</enddate><creator>Lonergan, Mark C.</creator><general>American Society for the Advancement of Science</general><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8GL</scope><scope>IBG</scope><scope>IOV</scope><scope>ISN</scope><scope>0-V</scope><scope>3V.</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88B</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9-</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0K</scope><scope>M0P</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope></search><sort><creationdate>19971219</creationdate><title>A Tunable Diode Based on an Inorganic Semiconductor Conjugated Polymer Interface</title><author>Lonergan, Mark C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-b82ad040ffcddfcd420ae896fc264f9e6aa7be606b43e4f65081c4b3270767863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Applied sciences</topic><topic>Charge transfer</topic><topic>Conducting polymers</topic><topic>Diodes</topic><topic>Diodes, Schottky-barrier</topic><topic>Electric current</topic><topic>Electric potential</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Organic conductors</topic><topic>Organic semiconductors</topic><topic>Polymers</topic><topic>Schottky diodes</topic><topic>Semiconductor diodes</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Semiconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lonergan, Mark C.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: High School</collection><collection>Gale In Context: Biography</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Education Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Agricultural Science Database</collection><collection>Education Database</collection><collection>Consumer Health Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lonergan, Mark C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Tunable Diode Based on an Inorganic Semiconductor Conjugated Polymer Interface</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>1997-12-19</date><risdate>1997</risdate><volume>278</volume><issue>5346</issue><spage>2103</spage><epage>2106</epage><pages>2103-2106</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Although in principle semiconductor-metal (Schottky) diodes should be tunable by changing the work function of the metal, such flexibility cannot be achieved in a single device and in practice is often limited by interfacial states that cause Fermi-level pinning. A tunable diode is reported based on a hybrid inorganic-organic, n-indium phosphide|poly(pyrrole)|nonaqueous electrolyte architecture. By electrochemically manipulating the work function of the conjugated polymer poly(pyrrole), the turn-on voltage (more precisely, the forward bias potential required to pass a particular current) of the diode can be continuously and actively tuned by more than 0.6 volt. The work highlights a distinguishing feature of conjugated polymers relative to more traditional semiconductor materials, namely, the ability of dopant ions to permeate conjugated polymers, thereby enabling electrochemical manipulation.</abstract><cop>Washington, DC</cop><pub>American Society for the Advancement of Science</pub><pmid>9405342</pmid><doi>10.1126/science.278.5346.2103</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 1997-12, Vol.278 (5346), p.2103-2106 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_journals_213576492 |
source | Science Magazine; JSTOR Archive Collection A-Z Listing |
subjects | Applied sciences Charge transfer Conducting polymers Diodes Diodes, Schottky-barrier Electric current Electric potential Electrodes Electrolytes Electronics Exact sciences and technology Organic conductors Organic semiconductors Polymers Schottky diodes Semiconductor diodes Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Semiconductors |
title | A Tunable Diode Based on an Inorganic Semiconductor Conjugated Polymer Interface |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T21%3A05%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Tunable%20Diode%20Based%20on%20an%20Inorganic%20Semiconductor%20Conjugated%20Polymer%20Interface&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Lonergan,%20Mark%20C.&rft.date=1997-12-19&rft.volume=278&rft.issue=5346&rft.spage=2103&rft.epage=2106&rft.pages=2103-2106&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.278.5346.2103&rft_dat=%3Cgale_proqu%3EA20106386%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213576492&rft_id=info:pmid/9405342&rft_galeid=A20106386&rft_jstor_id=2893939&rfr_iscdi=true |