Context-Dependent Upper-Confidence Bounds for Directed Exploration

Directed exploration strategies for reinforcement learning are critical for learning an optimal policy in a minimal number of interactions with the environment. Many algorithms use optimism to direct exploration, either through visitation estimates or upper confidence bounds, as opposed to data-inef...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-04
Hauptverfasser: Kumaraswamy, Raksha, Schlegel, Matthew, White, Adam, White, Martha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Kumaraswamy, Raksha
Schlegel, Matthew
White, Adam
White, Martha
description Directed exploration strategies for reinforcement learning are critical for learning an optimal policy in a minimal number of interactions with the environment. Many algorithms use optimism to direct exploration, either through visitation estimates or upper confidence bounds, as opposed to data-inefficient strategies like \epsilon-greedy that use random, undirected exploration. Most data-efficient exploration methods require significant computation, typically relying on a learned model to guide exploration. Least-squares methods have the potential to provide some of the data-efficiency benefits of model-based approaches -- because they summarize past interactions -- with the computation closer to that of model-free approaches. In this work, we provide a novel, computationally efficient, incremental exploration strategy, leveraging this property of least-squares temporal difference learning (LSTD). We derive upper confidence bounds on the action-values learned by LSTD, with context-dependent (or state-dependent) noise variance. Such context-dependent noise focuses exploration on a subset of variable states, and allows for reduced exploration in other states. We empirically demonstrate that our algorithm can converge more quickly than other incremental exploration strategies using confidence estimates on action-values.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2135411226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2135411226</sourcerecordid><originalsourceid>FETCH-proquest_journals_21354112263</originalsourceid><addsrcrecordid>eNqNiksKwjAURYMgWLR7CDgONC9tddyPuAAdl9K8QkvJi_lAl28GLsDR5ZxzDywDpaS4lwAnlnu_FkUB9Q2qSmWsackE3IPo0KLRaAJ_W4tOJD8viSfkDUWjPZ_J8W5xOAXUvN_tRm4MC5kLO87j5jH_7ZldH_2rfQrr6BPRh2Gl6ExKA0hVlVIC1Oq_1xfHJDnY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2135411226</pqid></control><display><type>article</type><title>Context-Dependent Upper-Confidence Bounds for Directed Exploration</title><source>Free E- Journals</source><creator>Kumaraswamy, Raksha ; Schlegel, Matthew ; White, Adam ; White, Martha</creator><creatorcontrib>Kumaraswamy, Raksha ; Schlegel, Matthew ; White, Adam ; White, Martha</creatorcontrib><description>Directed exploration strategies for reinforcement learning are critical for learning an optimal policy in a minimal number of interactions with the environment. Many algorithms use optimism to direct exploration, either through visitation estimates or upper confidence bounds, as opposed to data-inefficient strategies like \epsilon-greedy that use random, undirected exploration. Most data-efficient exploration methods require significant computation, typically relying on a learned model to guide exploration. Least-squares methods have the potential to provide some of the data-efficiency benefits of model-based approaches -- because they summarize past interactions -- with the computation closer to that of model-free approaches. In this work, we provide a novel, computationally efficient, incremental exploration strategy, leveraging this property of least-squares temporal difference learning (LSTD). We derive upper confidence bounds on the action-values learned by LSTD, with context-dependent (or state-dependent) noise variance. Such context-dependent noise focuses exploration on a subset of variable states, and allows for reduced exploration in other states. We empirically demonstrate that our algorithm can converge more quickly than other incremental exploration strategies using confidence estimates on action-values.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Computational efficiency ; Confidence ; Exploration ; Least squares ; Machine learning</subject><ispartof>arXiv.org, 2021-04</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Kumaraswamy, Raksha</creatorcontrib><creatorcontrib>Schlegel, Matthew</creatorcontrib><creatorcontrib>White, Adam</creatorcontrib><creatorcontrib>White, Martha</creatorcontrib><title>Context-Dependent Upper-Confidence Bounds for Directed Exploration</title><title>arXiv.org</title><description>Directed exploration strategies for reinforcement learning are critical for learning an optimal policy in a minimal number of interactions with the environment. Many algorithms use optimism to direct exploration, either through visitation estimates or upper confidence bounds, as opposed to data-inefficient strategies like \epsilon-greedy that use random, undirected exploration. Most data-efficient exploration methods require significant computation, typically relying on a learned model to guide exploration. Least-squares methods have the potential to provide some of the data-efficiency benefits of model-based approaches -- because they summarize past interactions -- with the computation closer to that of model-free approaches. In this work, we provide a novel, computationally efficient, incremental exploration strategy, leveraging this property of least-squares temporal difference learning (LSTD). We derive upper confidence bounds on the action-values learned by LSTD, with context-dependent (or state-dependent) noise variance. Such context-dependent noise focuses exploration on a subset of variable states, and allows for reduced exploration in other states. We empirically demonstrate that our algorithm can converge more quickly than other incremental exploration strategies using confidence estimates on action-values.</description><subject>Algorithms</subject><subject>Computational efficiency</subject><subject>Confidence</subject><subject>Exploration</subject><subject>Least squares</subject><subject>Machine learning</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNiksKwjAURYMgWLR7CDgONC9tddyPuAAdl9K8QkvJi_lAl28GLsDR5ZxzDywDpaS4lwAnlnu_FkUB9Q2qSmWsackE3IPo0KLRaAJ_W4tOJD8viSfkDUWjPZ_J8W5xOAXUvN_tRm4MC5kLO87j5jH_7ZldH_2rfQrr6BPRh2Gl6ExKA0hVlVIC1Oq_1xfHJDnY</recordid><startdate>20210406</startdate><enddate>20210406</enddate><creator>Kumaraswamy, Raksha</creator><creator>Schlegel, Matthew</creator><creator>White, Adam</creator><creator>White, Martha</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210406</creationdate><title>Context-Dependent Upper-Confidence Bounds for Directed Exploration</title><author>Kumaraswamy, Raksha ; Schlegel, Matthew ; White, Adam ; White, Martha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21354112263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Computational efficiency</topic><topic>Confidence</topic><topic>Exploration</topic><topic>Least squares</topic><topic>Machine learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Kumaraswamy, Raksha</creatorcontrib><creatorcontrib>Schlegel, Matthew</creatorcontrib><creatorcontrib>White, Adam</creatorcontrib><creatorcontrib>White, Martha</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumaraswamy, Raksha</au><au>Schlegel, Matthew</au><au>White, Adam</au><au>White, Martha</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Context-Dependent Upper-Confidence Bounds for Directed Exploration</atitle><jtitle>arXiv.org</jtitle><date>2021-04-06</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Directed exploration strategies for reinforcement learning are critical for learning an optimal policy in a minimal number of interactions with the environment. Many algorithms use optimism to direct exploration, either through visitation estimates or upper confidence bounds, as opposed to data-inefficient strategies like \epsilon-greedy that use random, undirected exploration. Most data-efficient exploration methods require significant computation, typically relying on a learned model to guide exploration. Least-squares methods have the potential to provide some of the data-efficiency benefits of model-based approaches -- because they summarize past interactions -- with the computation closer to that of model-free approaches. In this work, we provide a novel, computationally efficient, incremental exploration strategy, leveraging this property of least-squares temporal difference learning (LSTD). We derive upper confidence bounds on the action-values learned by LSTD, with context-dependent (or state-dependent) noise variance. Such context-dependent noise focuses exploration on a subset of variable states, and allows for reduced exploration in other states. We empirically demonstrate that our algorithm can converge more quickly than other incremental exploration strategies using confidence estimates on action-values.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2135411226
source Free E- Journals
subjects Algorithms
Computational efficiency
Confidence
Exploration
Least squares
Machine learning
title Context-Dependent Upper-Confidence Bounds for Directed Exploration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A26%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Context-Dependent%20Upper-Confidence%20Bounds%20for%20Directed%20Exploration&rft.jtitle=arXiv.org&rft.au=Kumaraswamy,%20Raksha&rft.date=2021-04-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2135411226%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2135411226&rft_id=info:pmid/&rfr_iscdi=true