Unifying lower bounds for algebraic machines, semantically

This paper presents a new abstract method for proving lower bounds in computational complexity. Based on the notion of topological and measurable entropy for dynamical systems, it is shown to generalise three previous lower bounds results from the literature in algebraic complexity. We use it to pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-10
Hauptverfasser: Seiller, Thomas, Pellissier, Luc, Ulysse Léchine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Seiller, Thomas
Pellissier, Luc
Ulysse Léchine
description This paper presents a new abstract method for proving lower bounds in computational complexity. Based on the notion of topological and measurable entropy for dynamical systems, it is shown to generalise three previous lower bounds results from the literature in algebraic complexity. We use it to prove that maxflow, a Ptime complete problem, is not computable in polylogarithmic time on parallel random access machines (prams) working with real numbers. This improves, albeit slightly, on a result of Mulmuley since the class of machines considered extends the class "prams without bit operations", making more precise the relationship between Mulmuley's result and similar lower bounds on real prams. More importantly, we show our method captures previous lower bounds results from the literature, thus providing a unifying framework for "topological" proofs of lower bounds: Steele and Yao's lower bounds for algebraic decision trees, Ben-Or's lower bounds for algebraic computation trees, Cucker's proof that NC is not equal to Ptime in the real case, and Mulmuley's lower bounds for "prams without bit operations".
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2135409844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2135409844</sourcerecordid><originalsourceid>FETCH-proquest_journals_21354098443</originalsourceid><addsrcrecordid>eNqNyksKwjAUQNEgCBbtHgJOLaT5aHUqigvQcXmNSU1JE81rke5eBy7A0R2cOyMZF6IsKsn5guSIHWOMb3dcKZGRwy04O7nQUh_fJtEmjuGO1MZEwbemSeA07UE_XDC4oWh6CIPT4P20InMLHk3-65Ksz6fr8VI8U3yNBoe6i2MKX6p5KZRk-0pK8d_1AeiDNyc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2135409844</pqid></control><display><type>article</type><title>Unifying lower bounds for algebraic machines, semantically</title><source>Free E- Journals</source><creator>Seiller, Thomas ; Pellissier, Luc ; Ulysse Léchine</creator><creatorcontrib>Seiller, Thomas ; Pellissier, Luc ; Ulysse Léchine</creatorcontrib><description>This paper presents a new abstract method for proving lower bounds in computational complexity. Based on the notion of topological and measurable entropy for dynamical systems, it is shown to generalise three previous lower bounds results from the literature in algebraic complexity. We use it to prove that maxflow, a Ptime complete problem, is not computable in polylogarithmic time on parallel random access machines (prams) working with real numbers. This improves, albeit slightly, on a result of Mulmuley since the class of machines considered extends the class "prams without bit operations", making more precise the relationship between Mulmuley's result and similar lower bounds on real prams. More importantly, we show our method captures previous lower bounds results from the literature, thus providing a unifying framework for "topological" proofs of lower bounds: Steele and Yao's lower bounds for algebraic decision trees, Ben-Or's lower bounds for algebraic computation trees, Cucker's proof that NC is not equal to Ptime in the real case, and Mulmuley's lower bounds for "prams without bit operations".</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algebra ; Complexity theory ; Dynamical systems ; Integers ; Lower bounds ; Mathematical models ; Random access</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Seiller, Thomas</creatorcontrib><creatorcontrib>Pellissier, Luc</creatorcontrib><creatorcontrib>Ulysse Léchine</creatorcontrib><title>Unifying lower bounds for algebraic machines, semantically</title><title>arXiv.org</title><description>This paper presents a new abstract method for proving lower bounds in computational complexity. Based on the notion of topological and measurable entropy for dynamical systems, it is shown to generalise three previous lower bounds results from the literature in algebraic complexity. We use it to prove that maxflow, a Ptime complete problem, is not computable in polylogarithmic time on parallel random access machines (prams) working with real numbers. This improves, albeit slightly, on a result of Mulmuley since the class of machines considered extends the class "prams without bit operations", making more precise the relationship between Mulmuley's result and similar lower bounds on real prams. More importantly, we show our method captures previous lower bounds results from the literature, thus providing a unifying framework for "topological" proofs of lower bounds: Steele and Yao's lower bounds for algebraic decision trees, Ben-Or's lower bounds for algebraic computation trees, Cucker's proof that NC is not equal to Ptime in the real case, and Mulmuley's lower bounds for "prams without bit operations".</description><subject>Algebra</subject><subject>Complexity theory</subject><subject>Dynamical systems</subject><subject>Integers</subject><subject>Lower bounds</subject><subject>Mathematical models</subject><subject>Random access</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyksKwjAUQNEgCBbtHgJOLaT5aHUqigvQcXmNSU1JE81rke5eBy7A0R2cOyMZF6IsKsn5guSIHWOMb3dcKZGRwy04O7nQUh_fJtEmjuGO1MZEwbemSeA07UE_XDC4oWh6CIPT4P20InMLHk3-65Ksz6fr8VI8U3yNBoe6i2MKX6p5KZRk-0pK8d_1AeiDNyc</recordid><startdate>20241017</startdate><enddate>20241017</enddate><creator>Seiller, Thomas</creator><creator>Pellissier, Luc</creator><creator>Ulysse Léchine</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241017</creationdate><title>Unifying lower bounds for algebraic machines, semantically</title><author>Seiller, Thomas ; Pellissier, Luc ; Ulysse Léchine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21354098443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Complexity theory</topic><topic>Dynamical systems</topic><topic>Integers</topic><topic>Lower bounds</topic><topic>Mathematical models</topic><topic>Random access</topic><toplevel>online_resources</toplevel><creatorcontrib>Seiller, Thomas</creatorcontrib><creatorcontrib>Pellissier, Luc</creatorcontrib><creatorcontrib>Ulysse Léchine</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seiller, Thomas</au><au>Pellissier, Luc</au><au>Ulysse Léchine</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Unifying lower bounds for algebraic machines, semantically</atitle><jtitle>arXiv.org</jtitle><date>2024-10-17</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>This paper presents a new abstract method for proving lower bounds in computational complexity. Based on the notion of topological and measurable entropy for dynamical systems, it is shown to generalise three previous lower bounds results from the literature in algebraic complexity. We use it to prove that maxflow, a Ptime complete problem, is not computable in polylogarithmic time on parallel random access machines (prams) working with real numbers. This improves, albeit slightly, on a result of Mulmuley since the class of machines considered extends the class "prams without bit operations", making more precise the relationship between Mulmuley's result and similar lower bounds on real prams. More importantly, we show our method captures previous lower bounds results from the literature, thus providing a unifying framework for "topological" proofs of lower bounds: Steele and Yao's lower bounds for algebraic decision trees, Ben-Or's lower bounds for algebraic computation trees, Cucker's proof that NC is not equal to Ptime in the real case, and Mulmuley's lower bounds for "prams without bit operations".</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2135409844
source Free E- Journals
subjects Algebra
Complexity theory
Dynamical systems
Integers
Lower bounds
Mathematical models
Random access
title Unifying lower bounds for algebraic machines, semantically
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A38%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Unifying%20lower%20bounds%20for%20algebraic%20machines,%20semantically&rft.jtitle=arXiv.org&rft.au=Seiller,%20Thomas&rft.date=2024-10-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2135409844%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2135409844&rft_id=info:pmid/&rfr_iscdi=true