Molecular level investigations and stability analysis of mixed methane-tetrahydrofuran hydrates: Implications to energy storage
[Display omitted] •In-situ Raman analysis for real time cage occupancy data during mixed hydrate formation.•X-ray diffraction analysis of mixed CH4-THF structure elucidation.•Demonstration of stability of mixed hydrate pellet for two months. The widespread use of methane (CH4) as a bridging fuel to...
Gespeichert in:
Veröffentlicht in: | Fuel (Guildford) 2019-01, Vol.236, p.1505-1511 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1511 |
---|---|
container_issue | |
container_start_page | 1505 |
container_title | Fuel (Guildford) |
container_volume | 236 |
creator | Kumar, Asheesh Veluswamy, Hari Prakash Linga, Praveen Kumar, Rajnish |
description | [Display omitted]
•In-situ Raman analysis for real time cage occupancy data during mixed hydrate formation.•X-ray diffraction analysis of mixed CH4-THF structure elucidation.•Demonstration of stability of mixed hydrate pellet for two months.
The widespread use of methane (CH4) as a bridging fuel to transition into a carbon-constrained world necessitates the need to develop safe, reliable and efficient technology for large-scale CH4 storage. Solidified natural gas (SNG) technology via clathrate hydrates can store large volumes of CH4 at mild storage conditions (atmospheric pressure and moderate temperatures) compared to compressed natural gas (CNG) or adsorbed natural gas (ANG). Slow hydrate growth kinetics and stability of hydrates at moderate temperatures are two challenges that need to be mitigated in order to commercialize SNG technology. In this work, we characterize the mixed (methane-tetrahydrofuran) hydrate formation by analyzing solid hydrate phase highlighting temporal changes of the cage occupancy using in-situ Raman spectroscopy complemented by measuring the CH4 uptake along with visual observations. Powder X-ray diffraction (PXRD) characterization of synthesized hydrates confirms the presence of only sII structure. We also demonstrate the stability of the sII mixed (CH4-THF) hydrates at near atmospheric pressure for a time period of two months. |
doi_str_mv | 10.1016/j.fuel.2018.09.126 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2135091723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236118316739</els_id><sourcerecordid>2135091723</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-8d9a7f4ae66467f8a4e7738b280a70aff77577817a67dbe2a8379d30acda3b5f3</originalsourceid><addsrcrecordid>eNp9kE9r3DAQxUVpoNskX6AnQc52JMu25NJLCc0fSMglOYtZa7TRorU2krzUp371atmcc5oZeO8x70fID85qznh_va3tjL5uGFc1G2re9F_IiispKsk78ZWsWFFVjej5N_I9pS1jTKquXZF_T8HjOHuI1OMBPXXTAVN2G8guTInCZGjKsHbe5aVc4JfkEg2W7txfNHSH-Q0mrDLmCG-LicHOESZ6XCFj-kkfdnvvxo-4HChOGDdLCQ0RNnhBziz4hJcf85y83v55ubmvHp_vHm5-P1ZjK3iulBlA2haw79teWgUtSinUulEMJANrpeykVFxCL80aG1BCDkYwGA2IdWfFObk65e5jeJ9LQ70Ncyx1km646NjAZSOKqjmpxhhSimj1ProdxEVzpo-g9VYfQesjaM0GXUAX06-TCcv_B4dRp9HhNKJxEcesTXCf2f8DaXmKuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2135091723</pqid></control><display><type>article</type><title>Molecular level investigations and stability analysis of mixed methane-tetrahydrofuran hydrates: Implications to energy storage</title><source>Access via ScienceDirect (Elsevier)</source><creator>Kumar, Asheesh ; Veluswamy, Hari Prakash ; Linga, Praveen ; Kumar, Rajnish</creator><creatorcontrib>Kumar, Asheesh ; Veluswamy, Hari Prakash ; Linga, Praveen ; Kumar, Rajnish</creatorcontrib><description>[Display omitted]
•In-situ Raman analysis for real time cage occupancy data during mixed hydrate formation.•X-ray diffraction analysis of mixed CH4-THF structure elucidation.•Demonstration of stability of mixed hydrate pellet for two months.
The widespread use of methane (CH4) as a bridging fuel to transition into a carbon-constrained world necessitates the need to develop safe, reliable and efficient technology for large-scale CH4 storage. Solidified natural gas (SNG) technology via clathrate hydrates can store large volumes of CH4 at mild storage conditions (atmospheric pressure and moderate temperatures) compared to compressed natural gas (CNG) or adsorbed natural gas (ANG). Slow hydrate growth kinetics and stability of hydrates at moderate temperatures are two challenges that need to be mitigated in order to commercialize SNG technology. In this work, we characterize the mixed (methane-tetrahydrofuran) hydrate formation by analyzing solid hydrate phase highlighting temporal changes of the cage occupancy using in-situ Raman spectroscopy complemented by measuring the CH4 uptake along with visual observations. Powder X-ray diffraction (PXRD) characterization of synthesized hydrates confirms the presence of only sII structure. We also demonstrate the stability of the sII mixed (CH4-THF) hydrates at near atmospheric pressure for a time period of two months.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2018.09.126</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Atmospheric pressure ; Compressed gas ; Energy storage ; Gas hydrates ; Growth kinetics ; Hydrate stability ; Hydrates ; In-situ Raman spectroscopy ; Kinetics ; Methane ; Methane storage ; Natural gas ; Phase transitions ; Raman spectroscopy ; Solidified natural gas ; Spectrum analysis ; Stability analysis ; Storage conditions ; Technology ; Tetrahydrofuran ; Visual observation ; X ray powder diffraction ; X ray spectra ; X-ray diffraction</subject><ispartof>Fuel (Guildford), 2019-01, Vol.236, p.1505-1511</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-8d9a7f4ae66467f8a4e7738b280a70aff77577817a67dbe2a8379d30acda3b5f3</citedby><cites>FETCH-LOGICAL-c431t-8d9a7f4ae66467f8a4e7738b280a70aff77577817a67dbe2a8379d30acda3b5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fuel.2018.09.126$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Kumar, Asheesh</creatorcontrib><creatorcontrib>Veluswamy, Hari Prakash</creatorcontrib><creatorcontrib>Linga, Praveen</creatorcontrib><creatorcontrib>Kumar, Rajnish</creatorcontrib><title>Molecular level investigations and stability analysis of mixed methane-tetrahydrofuran hydrates: Implications to energy storage</title><title>Fuel (Guildford)</title><description>[Display omitted]
•In-situ Raman analysis for real time cage occupancy data during mixed hydrate formation.•X-ray diffraction analysis of mixed CH4-THF structure elucidation.•Demonstration of stability of mixed hydrate pellet for two months.
The widespread use of methane (CH4) as a bridging fuel to transition into a carbon-constrained world necessitates the need to develop safe, reliable and efficient technology for large-scale CH4 storage. Solidified natural gas (SNG) technology via clathrate hydrates can store large volumes of CH4 at mild storage conditions (atmospheric pressure and moderate temperatures) compared to compressed natural gas (CNG) or adsorbed natural gas (ANG). Slow hydrate growth kinetics and stability of hydrates at moderate temperatures are two challenges that need to be mitigated in order to commercialize SNG technology. In this work, we characterize the mixed (methane-tetrahydrofuran) hydrate formation by analyzing solid hydrate phase highlighting temporal changes of the cage occupancy using in-situ Raman spectroscopy complemented by measuring the CH4 uptake along with visual observations. Powder X-ray diffraction (PXRD) characterization of synthesized hydrates confirms the presence of only sII structure. We also demonstrate the stability of the sII mixed (CH4-THF) hydrates at near atmospheric pressure for a time period of two months.</description><subject>Atmospheric pressure</subject><subject>Compressed gas</subject><subject>Energy storage</subject><subject>Gas hydrates</subject><subject>Growth kinetics</subject><subject>Hydrate stability</subject><subject>Hydrates</subject><subject>In-situ Raman spectroscopy</subject><subject>Kinetics</subject><subject>Methane</subject><subject>Methane storage</subject><subject>Natural gas</subject><subject>Phase transitions</subject><subject>Raman spectroscopy</subject><subject>Solidified natural gas</subject><subject>Spectrum analysis</subject><subject>Stability analysis</subject><subject>Storage conditions</subject><subject>Technology</subject><subject>Tetrahydrofuran</subject><subject>Visual observation</subject><subject>X ray powder diffraction</subject><subject>X ray spectra</subject><subject>X-ray diffraction</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE9r3DAQxUVpoNskX6AnQc52JMu25NJLCc0fSMglOYtZa7TRorU2krzUp371atmcc5oZeO8x70fID85qznh_va3tjL5uGFc1G2re9F_IiispKsk78ZWsWFFVjej5N_I9pS1jTKquXZF_T8HjOHuI1OMBPXXTAVN2G8guTInCZGjKsHbe5aVc4JfkEg2W7txfNHSH-Q0mrDLmCG-LicHOESZ6XCFj-kkfdnvvxo-4HChOGDdLCQ0RNnhBziz4hJcf85y83v55ubmvHp_vHm5-P1ZjK3iulBlA2haw79teWgUtSinUulEMJANrpeykVFxCL80aG1BCDkYwGA2IdWfFObk65e5jeJ9LQ70Ncyx1km646NjAZSOKqjmpxhhSimj1ProdxEVzpo-g9VYfQesjaM0GXUAX06-TCcv_B4dRp9HhNKJxEcesTXCf2f8DaXmKuw</recordid><startdate>20190115</startdate><enddate>20190115</enddate><creator>Kumar, Asheesh</creator><creator>Veluswamy, Hari Prakash</creator><creator>Linga, Praveen</creator><creator>Kumar, Rajnish</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20190115</creationdate><title>Molecular level investigations and stability analysis of mixed methane-tetrahydrofuran hydrates: Implications to energy storage</title><author>Kumar, Asheesh ; Veluswamy, Hari Prakash ; Linga, Praveen ; Kumar, Rajnish</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-8d9a7f4ae66467f8a4e7738b280a70aff77577817a67dbe2a8379d30acda3b5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Atmospheric pressure</topic><topic>Compressed gas</topic><topic>Energy storage</topic><topic>Gas hydrates</topic><topic>Growth kinetics</topic><topic>Hydrate stability</topic><topic>Hydrates</topic><topic>In-situ Raman spectroscopy</topic><topic>Kinetics</topic><topic>Methane</topic><topic>Methane storage</topic><topic>Natural gas</topic><topic>Phase transitions</topic><topic>Raman spectroscopy</topic><topic>Solidified natural gas</topic><topic>Spectrum analysis</topic><topic>Stability analysis</topic><topic>Storage conditions</topic><topic>Technology</topic><topic>Tetrahydrofuran</topic><topic>Visual observation</topic><topic>X ray powder diffraction</topic><topic>X ray spectra</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Asheesh</creatorcontrib><creatorcontrib>Veluswamy, Hari Prakash</creatorcontrib><creatorcontrib>Linga, Praveen</creatorcontrib><creatorcontrib>Kumar, Rajnish</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Asheesh</au><au>Veluswamy, Hari Prakash</au><au>Linga, Praveen</au><au>Kumar, Rajnish</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular level investigations and stability analysis of mixed methane-tetrahydrofuran hydrates: Implications to energy storage</atitle><jtitle>Fuel (Guildford)</jtitle><date>2019-01-15</date><risdate>2019</risdate><volume>236</volume><spage>1505</spage><epage>1511</epage><pages>1505-1511</pages><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>[Display omitted]
•In-situ Raman analysis for real time cage occupancy data during mixed hydrate formation.•X-ray diffraction analysis of mixed CH4-THF structure elucidation.•Demonstration of stability of mixed hydrate pellet for two months.
The widespread use of methane (CH4) as a bridging fuel to transition into a carbon-constrained world necessitates the need to develop safe, reliable and efficient technology for large-scale CH4 storage. Solidified natural gas (SNG) technology via clathrate hydrates can store large volumes of CH4 at mild storage conditions (atmospheric pressure and moderate temperatures) compared to compressed natural gas (CNG) or adsorbed natural gas (ANG). Slow hydrate growth kinetics and stability of hydrates at moderate temperatures are two challenges that need to be mitigated in order to commercialize SNG technology. In this work, we characterize the mixed (methane-tetrahydrofuran) hydrate formation by analyzing solid hydrate phase highlighting temporal changes of the cage occupancy using in-situ Raman spectroscopy complemented by measuring the CH4 uptake along with visual observations. Powder X-ray diffraction (PXRD) characterization of synthesized hydrates confirms the presence of only sII structure. We also demonstrate the stability of the sII mixed (CH4-THF) hydrates at near atmospheric pressure for a time period of two months.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2018.09.126</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-2361 |
ispartof | Fuel (Guildford), 2019-01, Vol.236, p.1505-1511 |
issn | 0016-2361 1873-7153 |
language | eng |
recordid | cdi_proquest_journals_2135091723 |
source | Access via ScienceDirect (Elsevier) |
subjects | Atmospheric pressure Compressed gas Energy storage Gas hydrates Growth kinetics Hydrate stability Hydrates In-situ Raman spectroscopy Kinetics Methane Methane storage Natural gas Phase transitions Raman spectroscopy Solidified natural gas Spectrum analysis Stability analysis Storage conditions Technology Tetrahydrofuran Visual observation X ray powder diffraction X ray spectra X-ray diffraction |
title | Molecular level investigations and stability analysis of mixed methane-tetrahydrofuran hydrates: Implications to energy storage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A33%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20level%20investigations%20and%20stability%20analysis%20of%20mixed%20methane-tetrahydrofuran%20hydrates:%20Implications%20to%20energy%20storage&rft.jtitle=Fuel%20(Guildford)&rft.au=Kumar,%20Asheesh&rft.date=2019-01-15&rft.volume=236&rft.spage=1505&rft.epage=1511&rft.pages=1505-1511&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2018.09.126&rft_dat=%3Cproquest_cross%3E2135091723%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2135091723&rft_id=info:pmid/&rft_els_id=S0016236118316739&rfr_iscdi=true |