Origin based classification of crude oils by infrared spectrometry and chemometrics
Crude oil samples from different Iranian petrol resources in both, raw and mixture forms have been characterized by attenuated total reflectance mid infrared spectroscopy. Obtained spectra were classified by chemometric techniques to propose a method for geological based classification of crude oil...
Gespeichert in:
Veröffentlicht in: | Fuel (Guildford) 2019-01, Vol.236, p.1093-1099 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1099 |
---|---|
container_issue | |
container_start_page | 1093 |
container_title | Fuel (Guildford) |
container_volume | 236 |
creator | Bagheri Garmarudi, Amir Khanmohammadi, Mohammadreza Ghafoori Fard, Hassan de la Guardia, Miguel |
description | Crude oil samples from different Iranian petrol resources in both, raw and mixture forms have been characterized by attenuated total reflectance mid infrared spectroscopy. Obtained spectra were classified by chemometric techniques to propose a method for geological based classification of crude oil samples. Totally 251 samples from 7 petrol fields and 3 mixtures were analyzed. Mean centering and principal component analysis (PCA) supported – leverage value based outlier detection were used as preprocessing approaches. PCA, cluster analysis and soft independent modeling of class analogy (SIMCA) were utilized to classify the spectra. Obtained results confirmed that SIMCA is a robust chemometric technique for origin classification of crude oil samples based on their IR spectra, while the mixture samples were also classified satisfactory in some cases. Root mean square error, method precision and regression coefficient for the prediction of origin of an independent validation set of 111 samples were 1.41%, 96.7% and 0.957 respectively. |
doi_str_mv | 10.1016/j.fuel.2018.09.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2135091638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236118315503</els_id><sourcerecordid>2135091638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-7d91118a9d2e9d8a2befe1eae152dd44b787a8e31c72cb5de45b9ef8f990e5273</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI6-gKuC69acpJcE3MjgDQZmoa5DmpxoSqcdk1aYtzfjuHZ1OPB95_ITcg20AAr1bVe4GfuCURAFlQUFfkIWIBqeN1DxU7KgicoZr-GcXMTYUUobUZUL8roJ_sMPWasj2sz0OkbvvNGTH4dsdJkJs8Vs9H3M2n3mBxd0SGDcoZnCuMUp7DM9JPMTt7-tN_GSnDndR7z6q0vy_vjwtnrO15unl9X9Oje8rqa8sRIAhJaWobRCsxYdAmqEillblm0jGi2Qg2mYaSuLZdVKdMJJSbFiDV-Sm-PcXRi_ZoyT6sY5DGmlYsArKqHmIlHsSJkwxhjQqV3wWx32Cqg6hKc6dQhPHcJTVKoUXpLujhKm-789BhWNx8Gg9SF9ruzo_9N_AKTgeas</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2135091638</pqid></control><display><type>article</type><title>Origin based classification of crude oils by infrared spectrometry and chemometrics</title><source>Elsevier ScienceDirect Journals</source><creator>Bagheri Garmarudi, Amir ; Khanmohammadi, Mohammadreza ; Ghafoori Fard, Hassan ; de la Guardia, Miguel</creator><creatorcontrib>Bagheri Garmarudi, Amir ; Khanmohammadi, Mohammadreza ; Ghafoori Fard, Hassan ; de la Guardia, Miguel</creatorcontrib><description>Crude oil samples from different Iranian petrol resources in both, raw and mixture forms have been characterized by attenuated total reflectance mid infrared spectroscopy. Obtained spectra were classified by chemometric techniques to propose a method for geological based classification of crude oil samples. Totally 251 samples from 7 petrol fields and 3 mixtures were analyzed. Mean centering and principal component analysis (PCA) supported – leverage value based outlier detection were used as preprocessing approaches. PCA, cluster analysis and soft independent modeling of class analogy (SIMCA) were utilized to classify the spectra. Obtained results confirmed that SIMCA is a robust chemometric technique for origin classification of crude oil samples based on their IR spectra, while the mixture samples were also classified satisfactory in some cases. Root mean square error, method precision and regression coefficient for the prediction of origin of an independent validation set of 111 samples were 1.41%, 96.7% and 0.957 respectively.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2018.09.013</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Chemometrics ; Classification ; Cluster analysis ; Crude oil ; Data analysis ; Gasoline ; Geochemical origin ; Geochemistry ; Infrared spectra ; Infrared spectrometry ; Infrared spectroscopy ; Oil ; Outliers (statistics) ; Principal components analysis ; Reflectance ; Regression analysis ; Regression coefficients ; Scientific imaging ; SIMCA ; Spectrometry</subject><ispartof>Fuel (Guildford), 2019-01, Vol.236, p.1093-1099</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-7d91118a9d2e9d8a2befe1eae152dd44b787a8e31c72cb5de45b9ef8f990e5273</citedby><cites>FETCH-LOGICAL-c365t-7d91118a9d2e9d8a2befe1eae152dd44b787a8e31c72cb5de45b9ef8f990e5273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0016236118315503$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Bagheri Garmarudi, Amir</creatorcontrib><creatorcontrib>Khanmohammadi, Mohammadreza</creatorcontrib><creatorcontrib>Ghafoori Fard, Hassan</creatorcontrib><creatorcontrib>de la Guardia, Miguel</creatorcontrib><title>Origin based classification of crude oils by infrared spectrometry and chemometrics</title><title>Fuel (Guildford)</title><description>Crude oil samples from different Iranian petrol resources in both, raw and mixture forms have been characterized by attenuated total reflectance mid infrared spectroscopy. Obtained spectra were classified by chemometric techniques to propose a method for geological based classification of crude oil samples. Totally 251 samples from 7 petrol fields and 3 mixtures were analyzed. Mean centering and principal component analysis (PCA) supported – leverage value based outlier detection were used as preprocessing approaches. PCA, cluster analysis and soft independent modeling of class analogy (SIMCA) were utilized to classify the spectra. Obtained results confirmed that SIMCA is a robust chemometric technique for origin classification of crude oil samples based on their IR spectra, while the mixture samples were also classified satisfactory in some cases. Root mean square error, method precision and regression coefficient for the prediction of origin of an independent validation set of 111 samples were 1.41%, 96.7% and 0.957 respectively.</description><subject>Chemometrics</subject><subject>Classification</subject><subject>Cluster analysis</subject><subject>Crude oil</subject><subject>Data analysis</subject><subject>Gasoline</subject><subject>Geochemical origin</subject><subject>Geochemistry</subject><subject>Infrared spectra</subject><subject>Infrared spectrometry</subject><subject>Infrared spectroscopy</subject><subject>Oil</subject><subject>Outliers (statistics)</subject><subject>Principal components analysis</subject><subject>Reflectance</subject><subject>Regression analysis</subject><subject>Regression coefficients</subject><subject>Scientific imaging</subject><subject>SIMCA</subject><subject>Spectrometry</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOI6-gKuC69acpJcE3MjgDQZmoa5DmpxoSqcdk1aYtzfjuHZ1OPB95_ITcg20AAr1bVe4GfuCURAFlQUFfkIWIBqeN1DxU7KgicoZr-GcXMTYUUobUZUL8roJ_sMPWasj2sz0OkbvvNGTH4dsdJkJs8Vs9H3M2n3mBxd0SGDcoZnCuMUp7DM9JPMTt7-tN_GSnDndR7z6q0vy_vjwtnrO15unl9X9Oje8rqa8sRIAhJaWobRCsxYdAmqEillblm0jGi2Qg2mYaSuLZdVKdMJJSbFiDV-Sm-PcXRi_ZoyT6sY5DGmlYsArKqHmIlHsSJkwxhjQqV3wWx32Cqg6hKc6dQhPHcJTVKoUXpLujhKm-789BhWNx8Gg9SF9ruzo_9N_AKTgeas</recordid><startdate>20190115</startdate><enddate>20190115</enddate><creator>Bagheri Garmarudi, Amir</creator><creator>Khanmohammadi, Mohammadreza</creator><creator>Ghafoori Fard, Hassan</creator><creator>de la Guardia, Miguel</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20190115</creationdate><title>Origin based classification of crude oils by infrared spectrometry and chemometrics</title><author>Bagheri Garmarudi, Amir ; Khanmohammadi, Mohammadreza ; Ghafoori Fard, Hassan ; de la Guardia, Miguel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-7d91118a9d2e9d8a2befe1eae152dd44b787a8e31c72cb5de45b9ef8f990e5273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chemometrics</topic><topic>Classification</topic><topic>Cluster analysis</topic><topic>Crude oil</topic><topic>Data analysis</topic><topic>Gasoline</topic><topic>Geochemical origin</topic><topic>Geochemistry</topic><topic>Infrared spectra</topic><topic>Infrared spectrometry</topic><topic>Infrared spectroscopy</topic><topic>Oil</topic><topic>Outliers (statistics)</topic><topic>Principal components analysis</topic><topic>Reflectance</topic><topic>Regression analysis</topic><topic>Regression coefficients</topic><topic>Scientific imaging</topic><topic>SIMCA</topic><topic>Spectrometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bagheri Garmarudi, Amir</creatorcontrib><creatorcontrib>Khanmohammadi, Mohammadreza</creatorcontrib><creatorcontrib>Ghafoori Fard, Hassan</creatorcontrib><creatorcontrib>de la Guardia, Miguel</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bagheri Garmarudi, Amir</au><au>Khanmohammadi, Mohammadreza</au><au>Ghafoori Fard, Hassan</au><au>de la Guardia, Miguel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Origin based classification of crude oils by infrared spectrometry and chemometrics</atitle><jtitle>Fuel (Guildford)</jtitle><date>2019-01-15</date><risdate>2019</risdate><volume>236</volume><spage>1093</spage><epage>1099</epage><pages>1093-1099</pages><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>Crude oil samples from different Iranian petrol resources in both, raw and mixture forms have been characterized by attenuated total reflectance mid infrared spectroscopy. Obtained spectra were classified by chemometric techniques to propose a method for geological based classification of crude oil samples. Totally 251 samples from 7 petrol fields and 3 mixtures were analyzed. Mean centering and principal component analysis (PCA) supported – leverage value based outlier detection were used as preprocessing approaches. PCA, cluster analysis and soft independent modeling of class analogy (SIMCA) were utilized to classify the spectra. Obtained results confirmed that SIMCA is a robust chemometric technique for origin classification of crude oil samples based on their IR spectra, while the mixture samples were also classified satisfactory in some cases. Root mean square error, method precision and regression coefficient for the prediction of origin of an independent validation set of 111 samples were 1.41%, 96.7% and 0.957 respectively.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2018.09.013</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-2361 |
ispartof | Fuel (Guildford), 2019-01, Vol.236, p.1093-1099 |
issn | 0016-2361 1873-7153 |
language | eng |
recordid | cdi_proquest_journals_2135091638 |
source | Elsevier ScienceDirect Journals |
subjects | Chemometrics Classification Cluster analysis Crude oil Data analysis Gasoline Geochemical origin Geochemistry Infrared spectra Infrared spectrometry Infrared spectroscopy Oil Outliers (statistics) Principal components analysis Reflectance Regression analysis Regression coefficients Scientific imaging SIMCA Spectrometry |
title | Origin based classification of crude oils by infrared spectrometry and chemometrics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T04%3A09%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Origin%20based%20classification%20of%20crude%20oils%20by%20infrared%20spectrometry%20and%20chemometrics&rft.jtitle=Fuel%20(Guildford)&rft.au=Bagheri%20Garmarudi,%20Amir&rft.date=2019-01-15&rft.volume=236&rft.spage=1093&rft.epage=1099&rft.pages=1093-1099&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2018.09.013&rft_dat=%3Cproquest_cross%3E2135091638%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2135091638&rft_id=info:pmid/&rft_els_id=S0016236118315503&rfr_iscdi=true |