Origin based classification of crude oils by infrared spectrometry and chemometrics

Crude oil samples from different Iranian petrol resources in both, raw and mixture forms have been characterized by attenuated total reflectance mid infrared spectroscopy. Obtained spectra were classified by chemometric techniques to propose a method for geological based classification of crude oil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuel (Guildford) 2019-01, Vol.236, p.1093-1099
Hauptverfasser: Bagheri Garmarudi, Amir, Khanmohammadi, Mohammadreza, Ghafoori Fard, Hassan, de la Guardia, Miguel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1099
container_issue
container_start_page 1093
container_title Fuel (Guildford)
container_volume 236
creator Bagheri Garmarudi, Amir
Khanmohammadi, Mohammadreza
Ghafoori Fard, Hassan
de la Guardia, Miguel
description Crude oil samples from different Iranian petrol resources in both, raw and mixture forms have been characterized by attenuated total reflectance mid infrared spectroscopy. Obtained spectra were classified by chemometric techniques to propose a method for geological based classification of crude oil samples. Totally 251 samples from 7 petrol fields and 3 mixtures were analyzed. Mean centering and principal component analysis (PCA) supported – leverage value based outlier detection were used as preprocessing approaches. PCA, cluster analysis and soft independent modeling of class analogy (SIMCA) were utilized to classify the spectra. Obtained results confirmed that SIMCA is a robust chemometric technique for origin classification of crude oil samples based on their IR spectra, while the mixture samples were also classified satisfactory in some cases. Root mean square error, method precision and regression coefficient for the prediction of origin of an independent validation set of 111 samples were 1.41%, 96.7% and 0.957 respectively.
doi_str_mv 10.1016/j.fuel.2018.09.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2135091638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236118315503</els_id><sourcerecordid>2135091638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-7d91118a9d2e9d8a2befe1eae152dd44b787a8e31c72cb5de45b9ef8f990e5273</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI6-gKuC69acpJcE3MjgDQZmoa5DmpxoSqcdk1aYtzfjuHZ1OPB95_ITcg20AAr1bVe4GfuCURAFlQUFfkIWIBqeN1DxU7KgicoZr-GcXMTYUUobUZUL8roJ_sMPWasj2sz0OkbvvNGTH4dsdJkJs8Vs9H3M2n3mBxd0SGDcoZnCuMUp7DM9JPMTt7-tN_GSnDndR7z6q0vy_vjwtnrO15unl9X9Oje8rqa8sRIAhJaWobRCsxYdAmqEillblm0jGi2Qg2mYaSuLZdVKdMJJSbFiDV-Sm-PcXRi_ZoyT6sY5DGmlYsArKqHmIlHsSJkwxhjQqV3wWx32Cqg6hKc6dQhPHcJTVKoUXpLujhKm-789BhWNx8Gg9SF9ruzo_9N_AKTgeas</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2135091638</pqid></control><display><type>article</type><title>Origin based classification of crude oils by infrared spectrometry and chemometrics</title><source>Elsevier ScienceDirect Journals</source><creator>Bagheri Garmarudi, Amir ; Khanmohammadi, Mohammadreza ; Ghafoori Fard, Hassan ; de la Guardia, Miguel</creator><creatorcontrib>Bagheri Garmarudi, Amir ; Khanmohammadi, Mohammadreza ; Ghafoori Fard, Hassan ; de la Guardia, Miguel</creatorcontrib><description>Crude oil samples from different Iranian petrol resources in both, raw and mixture forms have been characterized by attenuated total reflectance mid infrared spectroscopy. Obtained spectra were classified by chemometric techniques to propose a method for geological based classification of crude oil samples. Totally 251 samples from 7 petrol fields and 3 mixtures were analyzed. Mean centering and principal component analysis (PCA) supported – leverage value based outlier detection were used as preprocessing approaches. PCA, cluster analysis and soft independent modeling of class analogy (SIMCA) were utilized to classify the spectra. Obtained results confirmed that SIMCA is a robust chemometric technique for origin classification of crude oil samples based on their IR spectra, while the mixture samples were also classified satisfactory in some cases. Root mean square error, method precision and regression coefficient for the prediction of origin of an independent validation set of 111 samples were 1.41%, 96.7% and 0.957 respectively.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2018.09.013</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Chemometrics ; Classification ; Cluster analysis ; Crude oil ; Data analysis ; Gasoline ; Geochemical origin ; Geochemistry ; Infrared spectra ; Infrared spectrometry ; Infrared spectroscopy ; Oil ; Outliers (statistics) ; Principal components analysis ; Reflectance ; Regression analysis ; Regression coefficients ; Scientific imaging ; SIMCA ; Spectrometry</subject><ispartof>Fuel (Guildford), 2019-01, Vol.236, p.1093-1099</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-7d91118a9d2e9d8a2befe1eae152dd44b787a8e31c72cb5de45b9ef8f990e5273</citedby><cites>FETCH-LOGICAL-c365t-7d91118a9d2e9d8a2befe1eae152dd44b787a8e31c72cb5de45b9ef8f990e5273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0016236118315503$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Bagheri Garmarudi, Amir</creatorcontrib><creatorcontrib>Khanmohammadi, Mohammadreza</creatorcontrib><creatorcontrib>Ghafoori Fard, Hassan</creatorcontrib><creatorcontrib>de la Guardia, Miguel</creatorcontrib><title>Origin based classification of crude oils by infrared spectrometry and chemometrics</title><title>Fuel (Guildford)</title><description>Crude oil samples from different Iranian petrol resources in both, raw and mixture forms have been characterized by attenuated total reflectance mid infrared spectroscopy. Obtained spectra were classified by chemometric techniques to propose a method for geological based classification of crude oil samples. Totally 251 samples from 7 petrol fields and 3 mixtures were analyzed. Mean centering and principal component analysis (PCA) supported – leverage value based outlier detection were used as preprocessing approaches. PCA, cluster analysis and soft independent modeling of class analogy (SIMCA) were utilized to classify the spectra. Obtained results confirmed that SIMCA is a robust chemometric technique for origin classification of crude oil samples based on their IR spectra, while the mixture samples were also classified satisfactory in some cases. Root mean square error, method precision and regression coefficient for the prediction of origin of an independent validation set of 111 samples were 1.41%, 96.7% and 0.957 respectively.</description><subject>Chemometrics</subject><subject>Classification</subject><subject>Cluster analysis</subject><subject>Crude oil</subject><subject>Data analysis</subject><subject>Gasoline</subject><subject>Geochemical origin</subject><subject>Geochemistry</subject><subject>Infrared spectra</subject><subject>Infrared spectrometry</subject><subject>Infrared spectroscopy</subject><subject>Oil</subject><subject>Outliers (statistics)</subject><subject>Principal components analysis</subject><subject>Reflectance</subject><subject>Regression analysis</subject><subject>Regression coefficients</subject><subject>Scientific imaging</subject><subject>SIMCA</subject><subject>Spectrometry</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOI6-gKuC69acpJcE3MjgDQZmoa5DmpxoSqcdk1aYtzfjuHZ1OPB95_ITcg20AAr1bVe4GfuCURAFlQUFfkIWIBqeN1DxU7KgicoZr-GcXMTYUUobUZUL8roJ_sMPWasj2sz0OkbvvNGTH4dsdJkJs8Vs9H3M2n3mBxd0SGDcoZnCuMUp7DM9JPMTt7-tN_GSnDndR7z6q0vy_vjwtnrO15unl9X9Oje8rqa8sRIAhJaWobRCsxYdAmqEillblm0jGi2Qg2mYaSuLZdVKdMJJSbFiDV-Sm-PcXRi_ZoyT6sY5DGmlYsArKqHmIlHsSJkwxhjQqV3wWx32Cqg6hKc6dQhPHcJTVKoUXpLujhKm-789BhWNx8Gg9SF9ruzo_9N_AKTgeas</recordid><startdate>20190115</startdate><enddate>20190115</enddate><creator>Bagheri Garmarudi, Amir</creator><creator>Khanmohammadi, Mohammadreza</creator><creator>Ghafoori Fard, Hassan</creator><creator>de la Guardia, Miguel</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20190115</creationdate><title>Origin based classification of crude oils by infrared spectrometry and chemometrics</title><author>Bagheri Garmarudi, Amir ; Khanmohammadi, Mohammadreza ; Ghafoori Fard, Hassan ; de la Guardia, Miguel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-7d91118a9d2e9d8a2befe1eae152dd44b787a8e31c72cb5de45b9ef8f990e5273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chemometrics</topic><topic>Classification</topic><topic>Cluster analysis</topic><topic>Crude oil</topic><topic>Data analysis</topic><topic>Gasoline</topic><topic>Geochemical origin</topic><topic>Geochemistry</topic><topic>Infrared spectra</topic><topic>Infrared spectrometry</topic><topic>Infrared spectroscopy</topic><topic>Oil</topic><topic>Outliers (statistics)</topic><topic>Principal components analysis</topic><topic>Reflectance</topic><topic>Regression analysis</topic><topic>Regression coefficients</topic><topic>Scientific imaging</topic><topic>SIMCA</topic><topic>Spectrometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bagheri Garmarudi, Amir</creatorcontrib><creatorcontrib>Khanmohammadi, Mohammadreza</creatorcontrib><creatorcontrib>Ghafoori Fard, Hassan</creatorcontrib><creatorcontrib>de la Guardia, Miguel</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bagheri Garmarudi, Amir</au><au>Khanmohammadi, Mohammadreza</au><au>Ghafoori Fard, Hassan</au><au>de la Guardia, Miguel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Origin based classification of crude oils by infrared spectrometry and chemometrics</atitle><jtitle>Fuel (Guildford)</jtitle><date>2019-01-15</date><risdate>2019</risdate><volume>236</volume><spage>1093</spage><epage>1099</epage><pages>1093-1099</pages><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>Crude oil samples from different Iranian petrol resources in both, raw and mixture forms have been characterized by attenuated total reflectance mid infrared spectroscopy. Obtained spectra were classified by chemometric techniques to propose a method for geological based classification of crude oil samples. Totally 251 samples from 7 petrol fields and 3 mixtures were analyzed. Mean centering and principal component analysis (PCA) supported – leverage value based outlier detection were used as preprocessing approaches. PCA, cluster analysis and soft independent modeling of class analogy (SIMCA) were utilized to classify the spectra. Obtained results confirmed that SIMCA is a robust chemometric technique for origin classification of crude oil samples based on their IR spectra, while the mixture samples were also classified satisfactory in some cases. Root mean square error, method precision and regression coefficient for the prediction of origin of an independent validation set of 111 samples were 1.41%, 96.7% and 0.957 respectively.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2018.09.013</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0016-2361
ispartof Fuel (Guildford), 2019-01, Vol.236, p.1093-1099
issn 0016-2361
1873-7153
language eng
recordid cdi_proquest_journals_2135091638
source Elsevier ScienceDirect Journals
subjects Chemometrics
Classification
Cluster analysis
Crude oil
Data analysis
Gasoline
Geochemical origin
Geochemistry
Infrared spectra
Infrared spectrometry
Infrared spectroscopy
Oil
Outliers (statistics)
Principal components analysis
Reflectance
Regression analysis
Regression coefficients
Scientific imaging
SIMCA
Spectrometry
title Origin based classification of crude oils by infrared spectrometry and chemometrics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T04%3A09%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Origin%20based%20classification%20of%20crude%20oils%20by%20infrared%20spectrometry%20and%20chemometrics&rft.jtitle=Fuel%20(Guildford)&rft.au=Bagheri%20Garmarudi,%20Amir&rft.date=2019-01-15&rft.volume=236&rft.spage=1093&rft.epage=1099&rft.pages=1093-1099&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2018.09.013&rft_dat=%3Cproquest_cross%3E2135091638%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2135091638&rft_id=info:pmid/&rft_els_id=S0016236118315503&rfr_iscdi=true