Gender Classification Based on Multiscale Facial Fusion Feature

For gender classification, we present a new approach based on Multiscale facial fusion feature (MS3F) to classify gender from face images. Fusion feature is extracted by the combination of Local Binary Pattern (LBP) and Local Phase Quantization (LPQ) descriptors, and a multiscale feature is generate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2018-01, Vol.2018 (2018), p.1-6
Hauptverfasser: Shao, Zhuhong, Shang, Yuanyuan, Ding, Hui, Zhang, Chunyu, Fu, Xiaoyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue 2018
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2018
creator Shao, Zhuhong
Shang, Yuanyuan
Ding, Hui
Zhang, Chunyu
Fu, Xiaoyan
description For gender classification, we present a new approach based on Multiscale facial fusion feature (MS3F) to classify gender from face images. Fusion feature is extracted by the combination of Local Binary Pattern (LBP) and Local Phase Quantization (LPQ) descriptors, and a multiscale feature is generated through Multiblock (MB) and Multilevel (ML) methods. Support Vector Machine (SVM) is employed as the classifier to conduct gender classification. All the experiments are performed based on the Images of Groups (IoG) dataset. The results demonstrate that the application of Multiscale fusion feature greatly improves the performance of gender classification, and our approach outperforms the state-of-the-art techniques.
doi_str_mv 10.1155/2018/1924151
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2135028772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2135028772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-89fcc27773d72f3303ace1e7a2a683589a0acdbbc78d1e5c42ef0b7cd7e650853</originalsourceid><addsrcrecordid>eNqF0M1LxDAQBfAgCq6rN89S8Kh189E06Ul0sauw4kXBW5lNJpiltmvSIv73tnTBo6d5hx9v4BFyzugNY1IuOGV6wQqeMckOyIzJXKSSZepwyJRnKePi_ZicxLillA9Gz8jtChuLIVnWEKN33kDn2ya5h4g2GcJzX3c-GqgxKcF4qJOyj6MoEbo-4Ck5clBHPNvfOXkrH16Xj-n6ZfW0vFunRuS0S3XhjOFKKWEVd0JQAQYZKuCQayF1ARSM3WyM0pahNBlHRzfKWIW5pFqKObmceneh_eoxdtW27UMzvKw4E5JyrRQf1PWkTGhjDOiqXfCfEH4qRqtxomqcqNpPNPCriX_4xsK3_09fTBoHgw7-NKeyEFr8Av8abqo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2135028772</pqid></control><display><type>article</type><title>Gender Classification Based on Multiscale Facial Fusion Feature</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>Alma/SFX Local Collection</source><creator>Shao, Zhuhong ; Shang, Yuanyuan ; Ding, Hui ; Zhang, Chunyu ; Fu, Xiaoyan</creator><contributor>Dewasme, Laurent ; Laurent Dewasme</contributor><creatorcontrib>Shao, Zhuhong ; Shang, Yuanyuan ; Ding, Hui ; Zhang, Chunyu ; Fu, Xiaoyan ; Dewasme, Laurent ; Laurent Dewasme</creatorcontrib><description>For gender classification, we present a new approach based on Multiscale facial fusion feature (MS3F) to classify gender from face images. Fusion feature is extracted by the combination of Local Binary Pattern (LBP) and Local Phase Quantization (LPQ) descriptors, and a multiscale feature is generated through Multiblock (MB) and Multilevel (ML) methods. Support Vector Machine (SVM) is employed as the classifier to conduct gender classification. All the experiments are performed based on the Images of Groups (IoG) dataset. The results demonstrate that the application of Multiscale fusion feature greatly improves the performance of gender classification, and our approach outperforms the state-of-the-art techniques.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2018/1924151</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Architectural engineering ; Artificial intelligence ; Classification ; Electrical engineering ; Engineering ; Feature extraction ; Fourier transforms ; Gender ; Image classification ; Neural networks ; Pattern recognition ; Performance enhancement ; State of the art ; Studies ; Support vector machines</subject><ispartof>Mathematical problems in engineering, 2018-01, Vol.2018 (2018), p.1-6</ispartof><rights>Copyright © 2018 Chunyu Zhang et al.</rights><rights>Copyright © 2018 Chunyu Zhang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-89fcc27773d72f3303ace1e7a2a683589a0acdbbc78d1e5c42ef0b7cd7e650853</citedby><cites>FETCH-LOGICAL-c360t-89fcc27773d72f3303ace1e7a2a683589a0acdbbc78d1e5c42ef0b7cd7e650853</cites><orcidid>0000-0001-6152-368X ; 0000-0002-1920-7613 ; 0000-0003-1786-6487</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><contributor>Dewasme, Laurent</contributor><contributor>Laurent Dewasme</contributor><creatorcontrib>Shao, Zhuhong</creatorcontrib><creatorcontrib>Shang, Yuanyuan</creatorcontrib><creatorcontrib>Ding, Hui</creatorcontrib><creatorcontrib>Zhang, Chunyu</creatorcontrib><creatorcontrib>Fu, Xiaoyan</creatorcontrib><title>Gender Classification Based on Multiscale Facial Fusion Feature</title><title>Mathematical problems in engineering</title><description>For gender classification, we present a new approach based on Multiscale facial fusion feature (MS3F) to classify gender from face images. Fusion feature is extracted by the combination of Local Binary Pattern (LBP) and Local Phase Quantization (LPQ) descriptors, and a multiscale feature is generated through Multiblock (MB) and Multilevel (ML) methods. Support Vector Machine (SVM) is employed as the classifier to conduct gender classification. All the experiments are performed based on the Images of Groups (IoG) dataset. The results demonstrate that the application of Multiscale fusion feature greatly improves the performance of gender classification, and our approach outperforms the state-of-the-art techniques.</description><subject>Architectural engineering</subject><subject>Artificial intelligence</subject><subject>Classification</subject><subject>Electrical engineering</subject><subject>Engineering</subject><subject>Feature extraction</subject><subject>Fourier transforms</subject><subject>Gender</subject><subject>Image classification</subject><subject>Neural networks</subject><subject>Pattern recognition</subject><subject>Performance enhancement</subject><subject>State of the art</subject><subject>Studies</subject><subject>Support vector machines</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0M1LxDAQBfAgCq6rN89S8Kh189E06Ul0sauw4kXBW5lNJpiltmvSIv73tnTBo6d5hx9v4BFyzugNY1IuOGV6wQqeMckOyIzJXKSSZepwyJRnKePi_ZicxLillA9Gz8jtChuLIVnWEKN33kDn2ya5h4g2GcJzX3c-GqgxKcF4qJOyj6MoEbo-4Ck5clBHPNvfOXkrH16Xj-n6ZfW0vFunRuS0S3XhjOFKKWEVd0JQAQYZKuCQayF1ARSM3WyM0pahNBlHRzfKWIW5pFqKObmceneh_eoxdtW27UMzvKw4E5JyrRQf1PWkTGhjDOiqXfCfEH4qRqtxomqcqNpPNPCriX_4xsK3_09fTBoHgw7-NKeyEFr8Av8abqo</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Shao, Zhuhong</creator><creator>Shang, Yuanyuan</creator><creator>Ding, Hui</creator><creator>Zhang, Chunyu</creator><creator>Fu, Xiaoyan</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-6152-368X</orcidid><orcidid>https://orcid.org/0000-0002-1920-7613</orcidid><orcidid>https://orcid.org/0000-0003-1786-6487</orcidid></search><sort><creationdate>20180101</creationdate><title>Gender Classification Based on Multiscale Facial Fusion Feature</title><author>Shao, Zhuhong ; Shang, Yuanyuan ; Ding, Hui ; Zhang, Chunyu ; Fu, Xiaoyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-89fcc27773d72f3303ace1e7a2a683589a0acdbbc78d1e5c42ef0b7cd7e650853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Architectural engineering</topic><topic>Artificial intelligence</topic><topic>Classification</topic><topic>Electrical engineering</topic><topic>Engineering</topic><topic>Feature extraction</topic><topic>Fourier transforms</topic><topic>Gender</topic><topic>Image classification</topic><topic>Neural networks</topic><topic>Pattern recognition</topic><topic>Performance enhancement</topic><topic>State of the art</topic><topic>Studies</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shao, Zhuhong</creatorcontrib><creatorcontrib>Shang, Yuanyuan</creatorcontrib><creatorcontrib>Ding, Hui</creatorcontrib><creatorcontrib>Zhang, Chunyu</creatorcontrib><creatorcontrib>Fu, Xiaoyan</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shao, Zhuhong</au><au>Shang, Yuanyuan</au><au>Ding, Hui</au><au>Zhang, Chunyu</au><au>Fu, Xiaoyan</au><au>Dewasme, Laurent</au><au>Laurent Dewasme</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gender Classification Based on Multiscale Facial Fusion Feature</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>For gender classification, we present a new approach based on Multiscale facial fusion feature (MS3F) to classify gender from face images. Fusion feature is extracted by the combination of Local Binary Pattern (LBP) and Local Phase Quantization (LPQ) descriptors, and a multiscale feature is generated through Multiblock (MB) and Multilevel (ML) methods. Support Vector Machine (SVM) is employed as the classifier to conduct gender classification. All the experiments are performed based on the Images of Groups (IoG) dataset. The results demonstrate that the application of Multiscale fusion feature greatly improves the performance of gender classification, and our approach outperforms the state-of-the-art techniques.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2018/1924151</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6152-368X</orcidid><orcidid>https://orcid.org/0000-0002-1920-7613</orcidid><orcidid>https://orcid.org/0000-0003-1786-6487</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2018-01, Vol.2018 (2018), p.1-6
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_2135028772
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell Open Access Titles; Alma/SFX Local Collection
subjects Architectural engineering
Artificial intelligence
Classification
Electrical engineering
Engineering
Feature extraction
Fourier transforms
Gender
Image classification
Neural networks
Pattern recognition
Performance enhancement
State of the art
Studies
Support vector machines
title Gender Classification Based on Multiscale Facial Fusion Feature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A17%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gender%20Classification%20Based%20on%20Multiscale%20Facial%20Fusion%20Feature&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Shao,%20Zhuhong&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2018/1924151&rft_dat=%3Cproquest_cross%3E2135028772%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2135028772&rft_id=info:pmid/&rfr_iscdi=true