Gender Classification Based on Multiscale Facial Fusion Feature
For gender classification, we present a new approach based on Multiscale facial fusion feature (MS3F) to classify gender from face images. Fusion feature is extracted by the combination of Local Binary Pattern (LBP) and Local Phase Quantization (LPQ) descriptors, and a multiscale feature is generate...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2018-01, Vol.2018 (2018), p.1-6 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | 2018 |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2018 |
creator | Shao, Zhuhong Shang, Yuanyuan Ding, Hui Zhang, Chunyu Fu, Xiaoyan |
description | For gender classification, we present a new approach based on Multiscale facial fusion feature (MS3F) to classify gender from face images. Fusion feature is extracted by the combination of Local Binary Pattern (LBP) and Local Phase Quantization (LPQ) descriptors, and a multiscale feature is generated through Multiblock (MB) and Multilevel (ML) methods. Support Vector Machine (SVM) is employed as the classifier to conduct gender classification. All the experiments are performed based on the Images of Groups (IoG) dataset. The results demonstrate that the application of Multiscale fusion feature greatly improves the performance of gender classification, and our approach outperforms the state-of-the-art techniques. |
doi_str_mv | 10.1155/2018/1924151 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2135028772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2135028772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-89fcc27773d72f3303ace1e7a2a683589a0acdbbc78d1e5c42ef0b7cd7e650853</originalsourceid><addsrcrecordid>eNqF0M1LxDAQBfAgCq6rN89S8Kh189E06Ul0sauw4kXBW5lNJpiltmvSIv73tnTBo6d5hx9v4BFyzugNY1IuOGV6wQqeMckOyIzJXKSSZepwyJRnKePi_ZicxLillA9Gz8jtChuLIVnWEKN33kDn2ya5h4g2GcJzX3c-GqgxKcF4qJOyj6MoEbo-4Ck5clBHPNvfOXkrH16Xj-n6ZfW0vFunRuS0S3XhjOFKKWEVd0JQAQYZKuCQayF1ARSM3WyM0pahNBlHRzfKWIW5pFqKObmceneh_eoxdtW27UMzvKw4E5JyrRQf1PWkTGhjDOiqXfCfEH4qRqtxomqcqNpPNPCriX_4xsK3_09fTBoHgw7-NKeyEFr8Av8abqo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2135028772</pqid></control><display><type>article</type><title>Gender Classification Based on Multiscale Facial Fusion Feature</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>Alma/SFX Local Collection</source><creator>Shao, Zhuhong ; Shang, Yuanyuan ; Ding, Hui ; Zhang, Chunyu ; Fu, Xiaoyan</creator><contributor>Dewasme, Laurent ; Laurent Dewasme</contributor><creatorcontrib>Shao, Zhuhong ; Shang, Yuanyuan ; Ding, Hui ; Zhang, Chunyu ; Fu, Xiaoyan ; Dewasme, Laurent ; Laurent Dewasme</creatorcontrib><description>For gender classification, we present a new approach based on Multiscale facial fusion feature (MS3F) to classify gender from face images. Fusion feature is extracted by the combination of Local Binary Pattern (LBP) and Local Phase Quantization (LPQ) descriptors, and a multiscale feature is generated through Multiblock (MB) and Multilevel (ML) methods. Support Vector Machine (SVM) is employed as the classifier to conduct gender classification. All the experiments are performed based on the Images of Groups (IoG) dataset. The results demonstrate that the application of Multiscale fusion feature greatly improves the performance of gender classification, and our approach outperforms the state-of-the-art techniques.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2018/1924151</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Architectural engineering ; Artificial intelligence ; Classification ; Electrical engineering ; Engineering ; Feature extraction ; Fourier transforms ; Gender ; Image classification ; Neural networks ; Pattern recognition ; Performance enhancement ; State of the art ; Studies ; Support vector machines</subject><ispartof>Mathematical problems in engineering, 2018-01, Vol.2018 (2018), p.1-6</ispartof><rights>Copyright © 2018 Chunyu Zhang et al.</rights><rights>Copyright © 2018 Chunyu Zhang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-89fcc27773d72f3303ace1e7a2a683589a0acdbbc78d1e5c42ef0b7cd7e650853</citedby><cites>FETCH-LOGICAL-c360t-89fcc27773d72f3303ace1e7a2a683589a0acdbbc78d1e5c42ef0b7cd7e650853</cites><orcidid>0000-0001-6152-368X ; 0000-0002-1920-7613 ; 0000-0003-1786-6487</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><contributor>Dewasme, Laurent</contributor><contributor>Laurent Dewasme</contributor><creatorcontrib>Shao, Zhuhong</creatorcontrib><creatorcontrib>Shang, Yuanyuan</creatorcontrib><creatorcontrib>Ding, Hui</creatorcontrib><creatorcontrib>Zhang, Chunyu</creatorcontrib><creatorcontrib>Fu, Xiaoyan</creatorcontrib><title>Gender Classification Based on Multiscale Facial Fusion Feature</title><title>Mathematical problems in engineering</title><description>For gender classification, we present a new approach based on Multiscale facial fusion feature (MS3F) to classify gender from face images. Fusion feature is extracted by the combination of Local Binary Pattern (LBP) and Local Phase Quantization (LPQ) descriptors, and a multiscale feature is generated through Multiblock (MB) and Multilevel (ML) methods. Support Vector Machine (SVM) is employed as the classifier to conduct gender classification. All the experiments are performed based on the Images of Groups (IoG) dataset. The results demonstrate that the application of Multiscale fusion feature greatly improves the performance of gender classification, and our approach outperforms the state-of-the-art techniques.</description><subject>Architectural engineering</subject><subject>Artificial intelligence</subject><subject>Classification</subject><subject>Electrical engineering</subject><subject>Engineering</subject><subject>Feature extraction</subject><subject>Fourier transforms</subject><subject>Gender</subject><subject>Image classification</subject><subject>Neural networks</subject><subject>Pattern recognition</subject><subject>Performance enhancement</subject><subject>State of the art</subject><subject>Studies</subject><subject>Support vector machines</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0M1LxDAQBfAgCq6rN89S8Kh189E06Ul0sauw4kXBW5lNJpiltmvSIv73tnTBo6d5hx9v4BFyzugNY1IuOGV6wQqeMckOyIzJXKSSZepwyJRnKePi_ZicxLillA9Gz8jtChuLIVnWEKN33kDn2ya5h4g2GcJzX3c-GqgxKcF4qJOyj6MoEbo-4Ck5clBHPNvfOXkrH16Xj-n6ZfW0vFunRuS0S3XhjOFKKWEVd0JQAQYZKuCQayF1ARSM3WyM0pahNBlHRzfKWIW5pFqKObmceneh_eoxdtW27UMzvKw4E5JyrRQf1PWkTGhjDOiqXfCfEH4qRqtxomqcqNpPNPCriX_4xsK3_09fTBoHgw7-NKeyEFr8Av8abqo</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Shao, Zhuhong</creator><creator>Shang, Yuanyuan</creator><creator>Ding, Hui</creator><creator>Zhang, Chunyu</creator><creator>Fu, Xiaoyan</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-6152-368X</orcidid><orcidid>https://orcid.org/0000-0002-1920-7613</orcidid><orcidid>https://orcid.org/0000-0003-1786-6487</orcidid></search><sort><creationdate>20180101</creationdate><title>Gender Classification Based on Multiscale Facial Fusion Feature</title><author>Shao, Zhuhong ; Shang, Yuanyuan ; Ding, Hui ; Zhang, Chunyu ; Fu, Xiaoyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-89fcc27773d72f3303ace1e7a2a683589a0acdbbc78d1e5c42ef0b7cd7e650853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Architectural engineering</topic><topic>Artificial intelligence</topic><topic>Classification</topic><topic>Electrical engineering</topic><topic>Engineering</topic><topic>Feature extraction</topic><topic>Fourier transforms</topic><topic>Gender</topic><topic>Image classification</topic><topic>Neural networks</topic><topic>Pattern recognition</topic><topic>Performance enhancement</topic><topic>State of the art</topic><topic>Studies</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shao, Zhuhong</creatorcontrib><creatorcontrib>Shang, Yuanyuan</creatorcontrib><creatorcontrib>Ding, Hui</creatorcontrib><creatorcontrib>Zhang, Chunyu</creatorcontrib><creatorcontrib>Fu, Xiaoyan</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shao, Zhuhong</au><au>Shang, Yuanyuan</au><au>Ding, Hui</au><au>Zhang, Chunyu</au><au>Fu, Xiaoyan</au><au>Dewasme, Laurent</au><au>Laurent Dewasme</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gender Classification Based on Multiscale Facial Fusion Feature</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>For gender classification, we present a new approach based on Multiscale facial fusion feature (MS3F) to classify gender from face images. Fusion feature is extracted by the combination of Local Binary Pattern (LBP) and Local Phase Quantization (LPQ) descriptors, and a multiscale feature is generated through Multiblock (MB) and Multilevel (ML) methods. Support Vector Machine (SVM) is employed as the classifier to conduct gender classification. All the experiments are performed based on the Images of Groups (IoG) dataset. The results demonstrate that the application of Multiscale fusion feature greatly improves the performance of gender classification, and our approach outperforms the state-of-the-art techniques.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2018/1924151</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6152-368X</orcidid><orcidid>https://orcid.org/0000-0002-1920-7613</orcidid><orcidid>https://orcid.org/0000-0003-1786-6487</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2018-01, Vol.2018 (2018), p.1-6 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_journals_2135028772 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell Open Access Titles; Alma/SFX Local Collection |
subjects | Architectural engineering Artificial intelligence Classification Electrical engineering Engineering Feature extraction Fourier transforms Gender Image classification Neural networks Pattern recognition Performance enhancement State of the art Studies Support vector machines |
title | Gender Classification Based on Multiscale Facial Fusion Feature |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A17%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gender%20Classification%20Based%20on%20Multiscale%20Facial%20Fusion%20Feature&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Shao,%20Zhuhong&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2018/1924151&rft_dat=%3Cproquest_cross%3E2135028772%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2135028772&rft_id=info:pmid/&rfr_iscdi=true |