Ranking Forecasts by Stochastic Error Distance, Information and Reliability Measures
The stochastic error distance (SED) introduced by Diebold and Shin (2017) ranks forecast models by divergence between distributions of the errors of the actual and perfect forecast models. The basic SED is defined by the variation distance and provides a representation of the mean absolute error, bu...
Gespeichert in:
Veröffentlicht in: | International statistical review 2018-12, Vol.86 (3), p.442-468 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 468 |
---|---|
container_issue | 3 |
container_start_page | 442 |
container_title | International statistical review |
container_volume | 86 |
creator | Ardakani, Omid M. Ebrahimi, Nader Soofi, Ehsan S. |
description | The stochastic error distance (SED) introduced by Diebold and Shin (2017) ranks forecast models by divergence between distributions of the errors of the actual and perfect forecast models. The basic SED is defined by the variation distance and provides a representation of the mean absolute error, but by basing ranking on the entire error distribution and divergence, the SED moves beyond the traditional forecast evaluations. First, we establish connections between ranking forecast models by the SED, error entropy and some partial orderings of distributions. Then, we introduce the notion of excess error for forecast errors of magnitudes larger than a tolerance threshold and give the SED representation of the mean excess error (MEE). As a function of the threshold, the MEE is a local risk measure. With the distribution of the absolute error as a prior for the threshold, its Bayes risk is the entropy functional of the survival function, which is a known measure in the information theory and reliability. Notions and results are illustrated using various distributions for the error. The empirical versions of SED, MEE and its Bayes risk are compared with the mean squared error in ranking regression and autoregressive integrated moving average models for forecasting bond risk premia. |
doi_str_mv | 10.1111/insr.12250 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2135025598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48554508</jstor_id><sourcerecordid>48554508</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3230-ed3e1a685437861eee8efa532cc9e18bb3046863048719b82b1493b86f908693</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKsX70LAm7g1H5vd7FG01UJVaHsP2XRWU7dJTbbI_nu3rnp0DjMMPO8MPAidUzKiXd1YF8OIMibIARrQXNBESMYP0YBwkiV5ztNjdBLjmhDCmUwHaDnX7t26VzzxAYyOTcRlixeNN2_dYg0eh-ADvrex0c7ANZ66yoeNbqx3WLsVnkNtdWlr27T4CXTcBYin6KjSdYSznzlEy8l4efeYzF4epne3s8RwxkkCKw5UZ1KkPJcZBQAJlRacGVMAlWXJSZrJrOsyp0UpWUnTgpcyqwois4IP0WV_dhv8xw5io9Z-F1z3UTHKBWFCFLKjrnrKBB9jgEptg93o0CpK1F6a2ktT39I6mPbwp62h_YdU0-fF_Ddz0WfWsfHhL5NKIVJBJP8CtYl35A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2135025598</pqid></control><display><type>article</type><title>Ranking Forecasts by Stochastic Error Distance, Information and Reliability Measures</title><source>Jstor Complete Legacy</source><source>Wiley Online Library Journals Frontfile Complete</source><source>JSTOR Mathematics & Statistics</source><creator>Ardakani, Omid M. ; Ebrahimi, Nader ; Soofi, Ehsan S.</creator><creatorcontrib>Ardakani, Omid M. ; Ebrahimi, Nader ; Soofi, Ehsan S.</creatorcontrib><description>The stochastic error distance (SED) introduced by Diebold and Shin (2017) ranks forecast models by divergence between distributions of the errors of the actual and perfect forecast models. The basic SED is defined by the variation distance and provides a representation of the mean absolute error, but by basing ranking on the entire error distribution and divergence, the SED moves beyond the traditional forecast evaluations. First, we establish connections between ranking forecast models by the SED, error entropy and some partial orderings of distributions. Then, we introduce the notion of excess error for forecast errors of magnitudes larger than a tolerance threshold and give the SED representation of the mean excess error (MEE). As a function of the threshold, the MEE is a local risk measure. With the distribution of the absolute error as a prior for the threshold, its Bayes risk is the entropy functional of the survival function, which is a known measure in the information theory and reliability. Notions and results are illustrated using various distributions for the error. The empirical versions of SED, MEE and its Bayes risk are compared with the mean squared error in ranking regression and autoregressive integrated moving average models for forecasting bond risk premia.</description><identifier>ISSN: 0306-7734</identifier><identifier>EISSN: 1751-5823</identifier><identifier>DOI: 10.1111/insr.12250</identifier><language>eng</language><publisher>Hoboken: Wiley</publisher><subject>Autoregressive models ; Bayes risk ; Bayesian analysis ; convex order ; dispersive order ; Divergence ; Entropy ; Error analysis ; Errors ; Information theory ; mean absolute error ; mean residual life ; mean squared error ; Ranking ; Reliability ; Representations ; Risk ; stochastic order</subject><ispartof>International statistical review, 2018-12, Vol.86 (3), p.442-468</ispartof><rights>2018 The Authors</rights><rights>2018 The Authors. International Statistical Review © 2018 International Statistical Institute</rights><rights>2018 International Statistical Institute</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3230-ed3e1a685437861eee8efa532cc9e18bb3046863048719b82b1493b86f908693</citedby><cites>FETCH-LOGICAL-c3230-ed3e1a685437861eee8efa532cc9e18bb3046863048719b82b1493b86f908693</cites><orcidid>0000-0003-1311-3509</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48554508$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48554508$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,1411,27901,27902,45550,45551,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Ardakani, Omid M.</creatorcontrib><creatorcontrib>Ebrahimi, Nader</creatorcontrib><creatorcontrib>Soofi, Ehsan S.</creatorcontrib><title>Ranking Forecasts by Stochastic Error Distance, Information and Reliability Measures</title><title>International statistical review</title><description>The stochastic error distance (SED) introduced by Diebold and Shin (2017) ranks forecast models by divergence between distributions of the errors of the actual and perfect forecast models. The basic SED is defined by the variation distance and provides a representation of the mean absolute error, but by basing ranking on the entire error distribution and divergence, the SED moves beyond the traditional forecast evaluations. First, we establish connections between ranking forecast models by the SED, error entropy and some partial orderings of distributions. Then, we introduce the notion of excess error for forecast errors of magnitudes larger than a tolerance threshold and give the SED representation of the mean excess error (MEE). As a function of the threshold, the MEE is a local risk measure. With the distribution of the absolute error as a prior for the threshold, its Bayes risk is the entropy functional of the survival function, which is a known measure in the information theory and reliability. Notions and results are illustrated using various distributions for the error. The empirical versions of SED, MEE and its Bayes risk are compared with the mean squared error in ranking regression and autoregressive integrated moving average models for forecasting bond risk premia.</description><subject>Autoregressive models</subject><subject>Bayes risk</subject><subject>Bayesian analysis</subject><subject>convex order</subject><subject>dispersive order</subject><subject>Divergence</subject><subject>Entropy</subject><subject>Error analysis</subject><subject>Errors</subject><subject>Information theory</subject><subject>mean absolute error</subject><subject>mean residual life</subject><subject>mean squared error</subject><subject>Ranking</subject><subject>Reliability</subject><subject>Representations</subject><subject>Risk</subject><subject>stochastic order</subject><issn>0306-7734</issn><issn>1751-5823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKsX70LAm7g1H5vd7FG01UJVaHsP2XRWU7dJTbbI_nu3rnp0DjMMPO8MPAidUzKiXd1YF8OIMibIARrQXNBESMYP0YBwkiV5ztNjdBLjmhDCmUwHaDnX7t26VzzxAYyOTcRlixeNN2_dYg0eh-ADvrex0c7ANZ66yoeNbqx3WLsVnkNtdWlr27T4CXTcBYin6KjSdYSznzlEy8l4efeYzF4epne3s8RwxkkCKw5UZ1KkPJcZBQAJlRacGVMAlWXJSZrJrOsyp0UpWUnTgpcyqwois4IP0WV_dhv8xw5io9Z-F1z3UTHKBWFCFLKjrnrKBB9jgEptg93o0CpK1F6a2ktT39I6mPbwp62h_YdU0-fF_Ddz0WfWsfHhL5NKIVJBJP8CtYl35A</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Ardakani, Omid M.</creator><creator>Ebrahimi, Nader</creator><creator>Soofi, Ehsan S.</creator><general>Wiley</general><general>John Wiley & Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1311-3509</orcidid></search><sort><creationdate>20181201</creationdate><title>Ranking Forecasts by Stochastic Error Distance, Information and Reliability Measures</title><author>Ardakani, Omid M. ; Ebrahimi, Nader ; Soofi, Ehsan S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3230-ed3e1a685437861eee8efa532cc9e18bb3046863048719b82b1493b86f908693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Autoregressive models</topic><topic>Bayes risk</topic><topic>Bayesian analysis</topic><topic>convex order</topic><topic>dispersive order</topic><topic>Divergence</topic><topic>Entropy</topic><topic>Error analysis</topic><topic>Errors</topic><topic>Information theory</topic><topic>mean absolute error</topic><topic>mean residual life</topic><topic>mean squared error</topic><topic>Ranking</topic><topic>Reliability</topic><topic>Representations</topic><topic>Risk</topic><topic>stochastic order</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ardakani, Omid M.</creatorcontrib><creatorcontrib>Ebrahimi, Nader</creatorcontrib><creatorcontrib>Soofi, Ehsan S.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International statistical review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ardakani, Omid M.</au><au>Ebrahimi, Nader</au><au>Soofi, Ehsan S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ranking Forecasts by Stochastic Error Distance, Information and Reliability Measures</atitle><jtitle>International statistical review</jtitle><date>2018-12-01</date><risdate>2018</risdate><volume>86</volume><issue>3</issue><spage>442</spage><epage>468</epage><pages>442-468</pages><issn>0306-7734</issn><eissn>1751-5823</eissn><abstract>The stochastic error distance (SED) introduced by Diebold and Shin (2017) ranks forecast models by divergence between distributions of the errors of the actual and perfect forecast models. The basic SED is defined by the variation distance and provides a representation of the mean absolute error, but by basing ranking on the entire error distribution and divergence, the SED moves beyond the traditional forecast evaluations. First, we establish connections between ranking forecast models by the SED, error entropy and some partial orderings of distributions. Then, we introduce the notion of excess error for forecast errors of magnitudes larger than a tolerance threshold and give the SED representation of the mean excess error (MEE). As a function of the threshold, the MEE is a local risk measure. With the distribution of the absolute error as a prior for the threshold, its Bayes risk is the entropy functional of the survival function, which is a known measure in the information theory and reliability. Notions and results are illustrated using various distributions for the error. The empirical versions of SED, MEE and its Bayes risk are compared with the mean squared error in ranking regression and autoregressive integrated moving average models for forecasting bond risk premia.</abstract><cop>Hoboken</cop><pub>Wiley</pub><doi>10.1111/insr.12250</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0003-1311-3509</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0306-7734 |
ispartof | International statistical review, 2018-12, Vol.86 (3), p.442-468 |
issn | 0306-7734 1751-5823 |
language | eng |
recordid | cdi_proquest_journals_2135025598 |
source | Jstor Complete Legacy; Wiley Online Library Journals Frontfile Complete; JSTOR Mathematics & Statistics |
subjects | Autoregressive models Bayes risk Bayesian analysis convex order dispersive order Divergence Entropy Error analysis Errors Information theory mean absolute error mean residual life mean squared error Ranking Reliability Representations Risk stochastic order |
title | Ranking Forecasts by Stochastic Error Distance, Information and Reliability Measures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A04%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ranking%20Forecasts%20by%20Stochastic%20Error%20Distance,%20Information%20and%20Reliability%20Measures&rft.jtitle=International%20statistical%20review&rft.au=Ardakani,%20Omid%20M.&rft.date=2018-12-01&rft.volume=86&rft.issue=3&rft.spage=442&rft.epage=468&rft.pages=442-468&rft.issn=0306-7734&rft.eissn=1751-5823&rft_id=info:doi/10.1111/insr.12250&rft_dat=%3Cjstor_proqu%3E48554508%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2135025598&rft_id=info:pmid/&rft_jstor_id=48554508&rfr_iscdi=true |