Bacterial indoleacetic acid-induced synthesis of colloidal Ag2O nanocrystals and their biological activities
The biosynthesis and biological activity of colloidal Ag 2 O nanocrystals have not been well studied, although they have potential applications in many fields. For the first time, we developed a reducing agent free, cost-effective technique for Ag 2 O biosynthesis using Xanthomonas sp. P5. The optim...
Gespeichert in:
Veröffentlicht in: | Bioprocess and biosystems engineering 2019-03, Vol.42 (3), p.401-414 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 414 |
---|---|
container_issue | 3 |
container_start_page | 401 |
container_title | Bioprocess and biosystems engineering |
container_volume | 42 |
creator | Yoo, Ji-Yeon Jang, Eun-Young Jeong, Seong-Yun Hwang, Dae-Youn Son, Hong-Joo |
description | The biosynthesis and biological activity of colloidal Ag
2
O nanocrystals have not been well studied, although they have potential applications in many fields. For the first time, we developed a reducing agent free, cost-effective technique for Ag
2
O biosynthesis using
Xanthomonas
sp. P5. The optimal conditions for Ag
2
O synthesis were 50 °C, pH 8, and 2.5 mM AgNO
3
. Using these conditions the yield of Ag
2
O obtained at 10 h was about five times higher than that obtained at 12 h under unoptimized conditions. Ag
2
O was characterized by FESEM-EDS, TEM, dynamic light scattering, XRD, and UV–Visible spectroscopy. Indoleacetic acid produced by the strain P2 was involved in the synthesis of Ag
2
O. Ag
2
O exhibited a broad antimicrobial spectrum against several human pathogens. Furthermore, Ag
2
O exhibited 1,1-diphenyl-2-picrylhydrazyl (IC
50
= 25.1 µg/ml) and 2,2′-azinobis-3-ethylbenzothiazoline-6-sulfonate (IC
50
= 16.8 µg/ml) radical scavenging activities, and inhibited collagenase (IC
50
= 27.9 mg/ml). Cytotoxicity of Ag
2
O was tested in fibroblast cells and found to be non-toxic, demonstrating biocompatibility. |
doi_str_mv | 10.1007/s00449-018-2044-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2134604678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2134604678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-46c889b6d00e722362712325b569ffeef66700f14f1b3f13cc5f3a0fbe7201523</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwFvAc3SS7Ca7x1r8B4Ve9Byy2aSmrJuapEK_vSmrePI0j-H33jAPoWsKtxRA3iWAqmoJ0Iawoog8QTMqaE2kgPr0V9ctPUcXKW0BaN0wmKHhXptso9cD9mMfBquNzd5gbXxPymZvbI_TYczvNvmEg8MmDEPwfTEsNmyNRz0GEw8p6yFhPfa4kD7izochbLwpWDngv3z2Nl2iM1cwe_Uz5-jt8eF1-UxW66eX5WJFDG9EJpUwTdN2ogewkjEumKSMs7qrReuctU4ICeBo5WjHHeXG1I5rcF2hy1-Mz9HNlLuL4XNvU1bbsI9jOakY5ZWASsimUHSiTAwpRevULvoPHQ-KgjqWqqZSVSlVHUtVsnjY5EmFHTc2_iX_b_oGKLF6lA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2134604678</pqid></control><display><type>article</type><title>Bacterial indoleacetic acid-induced synthesis of colloidal Ag2O nanocrystals and their biological activities</title><source>SpringerLink Journals - AutoHoldings</source><creator>Yoo, Ji-Yeon ; Jang, Eun-Young ; Jeong, Seong-Yun ; Hwang, Dae-Youn ; Son, Hong-Joo</creator><creatorcontrib>Yoo, Ji-Yeon ; Jang, Eun-Young ; Jeong, Seong-Yun ; Hwang, Dae-Youn ; Son, Hong-Joo</creatorcontrib><description>The biosynthesis and biological activity of colloidal Ag
2
O nanocrystals have not been well studied, although they have potential applications in many fields. For the first time, we developed a reducing agent free, cost-effective technique for Ag
2
O biosynthesis using
Xanthomonas
sp. P5. The optimal conditions for Ag
2
O synthesis were 50 °C, pH 8, and 2.5 mM AgNO
3
. Using these conditions the yield of Ag
2
O obtained at 10 h was about five times higher than that obtained at 12 h under unoptimized conditions. Ag
2
O was characterized by FESEM-EDS, TEM, dynamic light scattering, XRD, and UV–Visible spectroscopy. Indoleacetic acid produced by the strain P2 was involved in the synthesis of Ag
2
O. Ag
2
O exhibited a broad antimicrobial spectrum against several human pathogens. Furthermore, Ag
2
O exhibited 1,1-diphenyl-2-picrylhydrazyl (IC
50
= 25.1 µg/ml) and 2,2′-azinobis-3-ethylbenzothiazoline-6-sulfonate (IC
50
= 16.8 µg/ml) radical scavenging activities, and inhibited collagenase (IC
50
= 27.9 mg/ml). Cytotoxicity of Ag
2
O was tested in fibroblast cells and found to be non-toxic, demonstrating biocompatibility.</description><identifier>ISSN: 1615-7591</identifier><identifier>EISSN: 1615-7605</identifier><identifier>DOI: 10.1007/s00449-018-2044-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Antimicrobial agents ; Biocompatibility ; Biological activity ; Biosynthesis ; Biotechnology ; Chemistry ; Chemistry and Materials Science ; Collagen ; Collagenase ; Crystals ; Cytotoxicity ; Environmental Engineering/Biotechnology ; Food Science ; Indoleacetic acid ; Industrial and Production Engineering ; Industrial Chemistry/Chemical Engineering ; Light scattering ; Nanocrystals ; Photon correlation spectroscopy ; Reducing agents ; Research Paper ; Scavenging ; Spectroscopy ; Toxicity testing ; Ultraviolet radiation</subject><ispartof>Bioprocess and biosystems engineering, 2019-03, Vol.42 (3), p.401-414</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Bioprocess and Biosystems Engineering is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-46c889b6d00e722362712325b569ffeef66700f14f1b3f13cc5f3a0fbe7201523</citedby><cites>FETCH-LOGICAL-c386t-46c889b6d00e722362712325b569ffeef66700f14f1b3f13cc5f3a0fbe7201523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00449-018-2044-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00449-018-2044-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Yoo, Ji-Yeon</creatorcontrib><creatorcontrib>Jang, Eun-Young</creatorcontrib><creatorcontrib>Jeong, Seong-Yun</creatorcontrib><creatorcontrib>Hwang, Dae-Youn</creatorcontrib><creatorcontrib>Son, Hong-Joo</creatorcontrib><title>Bacterial indoleacetic acid-induced synthesis of colloidal Ag2O nanocrystals and their biological activities</title><title>Bioprocess and biosystems engineering</title><addtitle>Bioprocess Biosyst Eng</addtitle><description>The biosynthesis and biological activity of colloidal Ag
2
O nanocrystals have not been well studied, although they have potential applications in many fields. For the first time, we developed a reducing agent free, cost-effective technique for Ag
2
O biosynthesis using
Xanthomonas
sp. P5. The optimal conditions for Ag
2
O synthesis were 50 °C, pH 8, and 2.5 mM AgNO
3
. Using these conditions the yield of Ag
2
O obtained at 10 h was about five times higher than that obtained at 12 h under unoptimized conditions. Ag
2
O was characterized by FESEM-EDS, TEM, dynamic light scattering, XRD, and UV–Visible spectroscopy. Indoleacetic acid produced by the strain P2 was involved in the synthesis of Ag
2
O. Ag
2
O exhibited a broad antimicrobial spectrum against several human pathogens. Furthermore, Ag
2
O exhibited 1,1-diphenyl-2-picrylhydrazyl (IC
50
= 25.1 µg/ml) and 2,2′-azinobis-3-ethylbenzothiazoline-6-sulfonate (IC
50
= 16.8 µg/ml) radical scavenging activities, and inhibited collagenase (IC
50
= 27.9 mg/ml). Cytotoxicity of Ag
2
O was tested in fibroblast cells and found to be non-toxic, demonstrating biocompatibility.</description><subject>Antimicrobial agents</subject><subject>Biocompatibility</subject><subject>Biological activity</subject><subject>Biosynthesis</subject><subject>Biotechnology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Collagen</subject><subject>Collagenase</subject><subject>Crystals</subject><subject>Cytotoxicity</subject><subject>Environmental Engineering/Biotechnology</subject><subject>Food Science</subject><subject>Indoleacetic acid</subject><subject>Industrial and Production Engineering</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Light scattering</subject><subject>Nanocrystals</subject><subject>Photon correlation spectroscopy</subject><subject>Reducing agents</subject><subject>Research Paper</subject><subject>Scavenging</subject><subject>Spectroscopy</subject><subject>Toxicity testing</subject><subject>Ultraviolet radiation</subject><issn>1615-7591</issn><issn>1615-7605</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9LAzEQxYMoWKsfwFvAc3SS7Ca7x1r8B4Ve9Byy2aSmrJuapEK_vSmrePI0j-H33jAPoWsKtxRA3iWAqmoJ0Iawoog8QTMqaE2kgPr0V9ctPUcXKW0BaN0wmKHhXptso9cD9mMfBquNzd5gbXxPymZvbI_TYczvNvmEg8MmDEPwfTEsNmyNRz0GEw8p6yFhPfa4kD7izochbLwpWDngv3z2Nl2iM1cwe_Uz5-jt8eF1-UxW66eX5WJFDG9EJpUwTdN2ogewkjEumKSMs7qrReuctU4ICeBo5WjHHeXG1I5rcF2hy1-Mz9HNlLuL4XNvU1bbsI9jOakY5ZWASsimUHSiTAwpRevULvoPHQ-KgjqWqqZSVSlVHUtVsnjY5EmFHTc2_iX_b_oGKLF6lA</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Yoo, Ji-Yeon</creator><creator>Jang, Eun-Young</creator><creator>Jeong, Seong-Yun</creator><creator>Hwang, Dae-Youn</creator><creator>Son, Hong-Joo</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20190301</creationdate><title>Bacterial indoleacetic acid-induced synthesis of colloidal Ag2O nanocrystals and their biological activities</title><author>Yoo, Ji-Yeon ; Jang, Eun-Young ; Jeong, Seong-Yun ; Hwang, Dae-Youn ; Son, Hong-Joo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-46c889b6d00e722362712325b569ffeef66700f14f1b3f13cc5f3a0fbe7201523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antimicrobial agents</topic><topic>Biocompatibility</topic><topic>Biological activity</topic><topic>Biosynthesis</topic><topic>Biotechnology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Collagen</topic><topic>Collagenase</topic><topic>Crystals</topic><topic>Cytotoxicity</topic><topic>Environmental Engineering/Biotechnology</topic><topic>Food Science</topic><topic>Indoleacetic acid</topic><topic>Industrial and Production Engineering</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Light scattering</topic><topic>Nanocrystals</topic><topic>Photon correlation spectroscopy</topic><topic>Reducing agents</topic><topic>Research Paper</topic><topic>Scavenging</topic><topic>Spectroscopy</topic><topic>Toxicity testing</topic><topic>Ultraviolet radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoo, Ji-Yeon</creatorcontrib><creatorcontrib>Jang, Eun-Young</creatorcontrib><creatorcontrib>Jeong, Seong-Yun</creatorcontrib><creatorcontrib>Hwang, Dae-Youn</creatorcontrib><creatorcontrib>Son, Hong-Joo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Bioprocess and biosystems engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoo, Ji-Yeon</au><au>Jang, Eun-Young</au><au>Jeong, Seong-Yun</au><au>Hwang, Dae-Youn</au><au>Son, Hong-Joo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bacterial indoleacetic acid-induced synthesis of colloidal Ag2O nanocrystals and their biological activities</atitle><jtitle>Bioprocess and biosystems engineering</jtitle><stitle>Bioprocess Biosyst Eng</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>42</volume><issue>3</issue><spage>401</spage><epage>414</epage><pages>401-414</pages><issn>1615-7591</issn><eissn>1615-7605</eissn><abstract>The biosynthesis and biological activity of colloidal Ag
2
O nanocrystals have not been well studied, although they have potential applications in many fields. For the first time, we developed a reducing agent free, cost-effective technique for Ag
2
O biosynthesis using
Xanthomonas
sp. P5. The optimal conditions for Ag
2
O synthesis were 50 °C, pH 8, and 2.5 mM AgNO
3
. Using these conditions the yield of Ag
2
O obtained at 10 h was about five times higher than that obtained at 12 h under unoptimized conditions. Ag
2
O was characterized by FESEM-EDS, TEM, dynamic light scattering, XRD, and UV–Visible spectroscopy. Indoleacetic acid produced by the strain P2 was involved in the synthesis of Ag
2
O. Ag
2
O exhibited a broad antimicrobial spectrum against several human pathogens. Furthermore, Ag
2
O exhibited 1,1-diphenyl-2-picrylhydrazyl (IC
50
= 25.1 µg/ml) and 2,2′-azinobis-3-ethylbenzothiazoline-6-sulfonate (IC
50
= 16.8 µg/ml) radical scavenging activities, and inhibited collagenase (IC
50
= 27.9 mg/ml). Cytotoxicity of Ag
2
O was tested in fibroblast cells and found to be non-toxic, demonstrating biocompatibility.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00449-018-2044-7</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-7591 |
ispartof | Bioprocess and biosystems engineering, 2019-03, Vol.42 (3), p.401-414 |
issn | 1615-7591 1615-7605 |
language | eng |
recordid | cdi_proquest_journals_2134604678 |
source | SpringerLink Journals - AutoHoldings |
subjects | Antimicrobial agents Biocompatibility Biological activity Biosynthesis Biotechnology Chemistry Chemistry and Materials Science Collagen Collagenase Crystals Cytotoxicity Environmental Engineering/Biotechnology Food Science Indoleacetic acid Industrial and Production Engineering Industrial Chemistry/Chemical Engineering Light scattering Nanocrystals Photon correlation spectroscopy Reducing agents Research Paper Scavenging Spectroscopy Toxicity testing Ultraviolet radiation |
title | Bacterial indoleacetic acid-induced synthesis of colloidal Ag2O nanocrystals and their biological activities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A10%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bacterial%20indoleacetic%20acid-induced%20synthesis%20of%20colloidal%20Ag2O%20nanocrystals%20and%20their%20biological%20activities&rft.jtitle=Bioprocess%20and%20biosystems%20engineering&rft.au=Yoo,%20Ji-Yeon&rft.date=2019-03-01&rft.volume=42&rft.issue=3&rft.spage=401&rft.epage=414&rft.pages=401-414&rft.issn=1615-7591&rft.eissn=1615-7605&rft_id=info:doi/10.1007/s00449-018-2044-7&rft_dat=%3Cproquest_cross%3E2134604678%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2134604678&rft_id=info:pmid/&rfr_iscdi=true |