On the Trace-Class Property of Hankel Operators Arising in the Theory of the Korteweg–de Vries Equation

The trace-class property of Hankel operators (and their derivatives with respect to the parameter) with strongly oscillating symbol is studied. The approach used is based on Peller’s criterion for the trace-class property of Hankel operators and on the precise analysis of the arising triple integral...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical Notes 2018-09, Vol.104 (3-4), p.377-394
Hauptverfasser: Grudsky, S. M., Rybkin, A. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 394
container_issue 3-4
container_start_page 377
container_title Mathematical Notes
container_volume 104
creator Grudsky, S. M.
Rybkin, A. V.
description The trace-class property of Hankel operators (and their derivatives with respect to the parameter) with strongly oscillating symbol is studied. The approach used is based on Peller’s criterion for the trace-class property of Hankel operators and on the precise analysis of the arising triple integral using the saddle-point method. Apparently, the obtained results are optimal. They are used to study the Cauchy problem for the Korteweg–de Vries equation. Namely, a connection between the smoothness of the solution and the rate of decrease of the initial data at positive infinity is established.
doi_str_mv 10.1134/S0001434618090067
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2134383068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2134383068</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-9295ce9bf9745a7f010e8da2494d37e8c5384232d84d23f5e62db6ca4ed1f5c63</originalsourceid><addsrcrecordid>eNp1kM1Kw0AUhQdRsFYfwN2A6-j8ZTJZllKtWKhgdRumyU2bWjPpnSnSne_gG_okJrbgQlxdzj3fuRcOIZecXXMu1c0TY4wrqTQ3LGVMJ0ekx-NERsYk-pj0Ojvq_FNy5v2qVVxz1iPVtKZhCXSGNodouLbe00d0DWDYUVfSsa1fYU2n7cIGh54OsPJVvaDVIbcEhz9kpx4cBniHxdfHZwH0BSvwdLTZ2lC5-pyclHbt4eIw--T5djQbjqPJ9O5-OJhEueQ6RKlI4xzSeZkmKrZJyTgDU1ihUlXIBEweS6OEFIVRhZBlDFoUc51bBQUv41zLPrna323QbbbgQ7ZyW6zbl5lom5JGMm1aiu-pHJ33CGXWYPVmcZdxlnWNZn8abTNin_EtWy8Afy__H_oGtGV4Hw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2134383068</pqid></control><display><type>article</type><title>On the Trace-Class Property of Hankel Operators Arising in the Theory of the Korteweg–de Vries Equation</title><source>Springer Nature - Complete Springer Journals</source><creator>Grudsky, S. M. ; Rybkin, A. V.</creator><creatorcontrib>Grudsky, S. M. ; Rybkin, A. V.</creatorcontrib><description>The trace-class property of Hankel operators (and their derivatives with respect to the parameter) with strongly oscillating symbol is studied. The approach used is based on Peller’s criterion for the trace-class property of Hankel operators and on the precise analysis of the arising triple integral using the saddle-point method. Apparently, the obtained results are optimal. They are used to study the Cauchy problem for the Korteweg–de Vries equation. Namely, a connection between the smoothness of the solution and the rate of decrease of the initial data at positive infinity is established.</description><identifier>ISSN: 0001-4346</identifier><identifier>ISSN: 1067-9073</identifier><identifier>EISSN: 1573-8876</identifier><identifier>DOI: 10.1134/S0001434618090067</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Cauchy problems ; Korteweg-Devries equation ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Saddle points ; Smoothness</subject><ispartof>Mathematical Notes, 2018-09, Vol.104 (3-4), p.377-394</ispartof><rights>Pleiades Publishing, Ltd. 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-9295ce9bf9745a7f010e8da2494d37e8c5384232d84d23f5e62db6ca4ed1f5c63</citedby><cites>FETCH-LOGICAL-c316t-9295ce9bf9745a7f010e8da2494d37e8c5384232d84d23f5e62db6ca4ed1f5c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0001434618090067$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0001434618090067$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Grudsky, S. M.</creatorcontrib><creatorcontrib>Rybkin, A. V.</creatorcontrib><title>On the Trace-Class Property of Hankel Operators Arising in the Theory of the Korteweg–de Vries Equation</title><title>Mathematical Notes</title><addtitle>Math Notes</addtitle><description>The trace-class property of Hankel operators (and their derivatives with respect to the parameter) with strongly oscillating symbol is studied. The approach used is based on Peller’s criterion for the trace-class property of Hankel operators and on the precise analysis of the arising triple integral using the saddle-point method. Apparently, the obtained results are optimal. They are used to study the Cauchy problem for the Korteweg–de Vries equation. Namely, a connection between the smoothness of the solution and the rate of decrease of the initial data at positive infinity is established.</description><subject>Cauchy problems</subject><subject>Korteweg-Devries equation</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Saddle points</subject><subject>Smoothness</subject><issn>0001-4346</issn><issn>1067-9073</issn><issn>1573-8876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Kw0AUhQdRsFYfwN2A6-j8ZTJZllKtWKhgdRumyU2bWjPpnSnSne_gG_okJrbgQlxdzj3fuRcOIZecXXMu1c0TY4wrqTQ3LGVMJ0ekx-NERsYk-pj0Ojvq_FNy5v2qVVxz1iPVtKZhCXSGNodouLbe00d0DWDYUVfSsa1fYU2n7cIGh54OsPJVvaDVIbcEhz9kpx4cBniHxdfHZwH0BSvwdLTZ2lC5-pyclHbt4eIw--T5djQbjqPJ9O5-OJhEueQ6RKlI4xzSeZkmKrZJyTgDU1ihUlXIBEweS6OEFIVRhZBlDFoUc51bBQUv41zLPrna323QbbbgQ7ZyW6zbl5lom5JGMm1aiu-pHJ33CGXWYPVmcZdxlnWNZn8abTNin_EtWy8Afy__H_oGtGV4Hw</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Grudsky, S. M.</creator><creator>Rybkin, A. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180901</creationdate><title>On the Trace-Class Property of Hankel Operators Arising in the Theory of the Korteweg–de Vries Equation</title><author>Grudsky, S. M. ; Rybkin, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-9295ce9bf9745a7f010e8da2494d37e8c5384232d84d23f5e62db6ca4ed1f5c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cauchy problems</topic><topic>Korteweg-Devries equation</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Saddle points</topic><topic>Smoothness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grudsky, S. M.</creatorcontrib><creatorcontrib>Rybkin, A. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematical Notes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grudsky, S. M.</au><au>Rybkin, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Trace-Class Property of Hankel Operators Arising in the Theory of the Korteweg–de Vries Equation</atitle><jtitle>Mathematical Notes</jtitle><stitle>Math Notes</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>104</volume><issue>3-4</issue><spage>377</spage><epage>394</epage><pages>377-394</pages><issn>0001-4346</issn><issn>1067-9073</issn><eissn>1573-8876</eissn><abstract>The trace-class property of Hankel operators (and their derivatives with respect to the parameter) with strongly oscillating symbol is studied. The approach used is based on Peller’s criterion for the trace-class property of Hankel operators and on the precise analysis of the arising triple integral using the saddle-point method. Apparently, the obtained results are optimal. They are used to study the Cauchy problem for the Korteweg–de Vries equation. Namely, a connection between the smoothness of the solution and the rate of decrease of the initial data at positive infinity is established.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0001434618090067</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-4346
ispartof Mathematical Notes, 2018-09, Vol.104 (3-4), p.377-394
issn 0001-4346
1067-9073
1573-8876
language eng
recordid cdi_proquest_journals_2134383068
source Springer Nature - Complete Springer Journals
subjects Cauchy problems
Korteweg-Devries equation
Mathematics
Mathematics and Statistics
Operators (mathematics)
Saddle points
Smoothness
title On the Trace-Class Property of Hankel Operators Arising in the Theory of the Korteweg–de Vries Equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A33%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Trace-Class%20Property%20of%20Hankel%20Operators%20Arising%20in%20the%20Theory%20of%20the%20Korteweg%E2%80%93de%20Vries%20Equation&rft.jtitle=Mathematical%20Notes&rft.au=Grudsky,%20S.%20M.&rft.date=2018-09-01&rft.volume=104&rft.issue=3-4&rft.spage=377&rft.epage=394&rft.pages=377-394&rft.issn=0001-4346&rft.eissn=1573-8876&rft_id=info:doi/10.1134/S0001434618090067&rft_dat=%3Cproquest_cross%3E2134383068%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2134383068&rft_id=info:pmid/&rfr_iscdi=true