Decision making in multiobjective optimization problems under uncertainty: balancing between robustness and quality
As an emerging research field, multiobjective robust optimization employs minmax robustness as the most commonly used concept. Light robustness is a concept in which a parameter, tolerable degradations, can be used to control the loss in the objective function values in the most typical scenario for...
Gespeichert in:
Veröffentlicht in: | OR Spectrum 2019-06, Vol.41 (2), p.391-413 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 413 |
---|---|
container_issue | 2 |
container_start_page | 391 |
container_title | OR Spectrum |
container_volume | 41 |
creator | Zhou-Kangas, Yue Miettinen, Kaisa |
description | As an emerging research field, multiobjective robust optimization employs minmax robustness as the most commonly used concept. Light robustness is a concept in which a parameter, tolerable degradations, can be used to control the loss in the objective function values in the most typical scenario for gaining in robustness. In this paper, we develop a lightly robust interactive multiobjective optimization method, LiRoMo, to support a decision maker to find a most preferred lightly robust efficient solution with a good balance between robustness and the objective function values in the most typical scenario. In LiRoMo, we formulate a lightly robust subproblem utilizing an achievement scalarizing function which involves a reference point specified by the decision maker. With this subproblem, we compute lightly robust efficient solutions with respect to the decision maker’s preferences. With LiRoMo, we support the decision maker in understanding the lightly robust efficient solutions with an augmented value path visualization. We use two measures ‘price to be paid for robustness’ and ‘gain in robustness’ to support the decision maker in considering the trade-offs between robustness and quality. As an example to illustrate the advantages of the method, we formulate and solve a simple investment portfolio optimization problem. |
doi_str_mv | 10.1007/s00291-018-0540-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2134086656</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2134086656</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-3ce4b5a8398c5a9b4eef9994e4fd7451815767e9008800cd013588cf014fd9973</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqXwA9giMQfOjRPbbKh8SpVYYLYc51K5pE5rO6Dy63EUJCYWn4fnfe_0EHJJ4ZoC8JsAsJA0BypyKBnk7IjMKCuqvCqAHZMZUE7zilXilJyFsAEoOS_EjIR7NDbY3mVb_WHdOrPpN3TR9vUGTbSfmPW7aLf2W8eR2vm-7nAbssE16NNr0EdtXTzcZrXutDNjSY3xC9FlCR5CdBhCpl2T7Qfd2Xg4Jyet7gJe_M45eX98eFs-56vXp5fl3So3TELMC4OsLrUopDClljVDbKWUDFnbcFZSQUtecZQAQgCYBmhRCmFaoAmQkhdzcjX1pqP3A4aoNv3gXVqpFrRgIKqqrBJFJ8r4PgSPrdp5u9X-oCio0a2a3KrkVo1uFUuZxZQJiXVr9H_N_4d-AMwLfmc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2134086656</pqid></control><display><type>article</type><title>Decision making in multiobjective optimization problems under uncertainty: balancing between robustness and quality</title><source>SpringerLink Journals</source><source>EBSCOhost Business Source Complete</source><creator>Zhou-Kangas, Yue ; Miettinen, Kaisa</creator><creatorcontrib>Zhou-Kangas, Yue ; Miettinen, Kaisa</creatorcontrib><description>As an emerging research field, multiobjective robust optimization employs minmax robustness as the most commonly used concept. Light robustness is a concept in which a parameter, tolerable degradations, can be used to control the loss in the objective function values in the most typical scenario for gaining in robustness. In this paper, we develop a lightly robust interactive multiobjective optimization method, LiRoMo, to support a decision maker to find a most preferred lightly robust efficient solution with a good balance between robustness and the objective function values in the most typical scenario. In LiRoMo, we formulate a lightly robust subproblem utilizing an achievement scalarizing function which involves a reference point specified by the decision maker. With this subproblem, we compute lightly robust efficient solutions with respect to the decision maker’s preferences. With LiRoMo, we support the decision maker in understanding the lightly robust efficient solutions with an augmented value path visualization. We use two measures ‘price to be paid for robustness’ and ‘gain in robustness’ to support the decision maker in considering the trade-offs between robustness and quality. As an example to illustrate the advantages of the method, we formulate and solve a simple investment portfolio optimization problem.</description><identifier>ISSN: 0171-6468</identifier><identifier>EISSN: 1436-6304</identifier><identifier>DOI: 10.1007/s00291-018-0540-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Business and Management ; Calculus of Variations and Optimal Control; Optimization ; Decision making ; Economic models ; Hierarchies ; Mathematical programming ; Multiple objective analysis ; Operations Research/Decision Theory ; Optimization ; Regular Article ; Robustness (mathematics)</subject><ispartof>OR Spectrum, 2019-06, Vol.41 (2), p.391-413</ispartof><rights>The Author(s) 2018</rights><rights>OR Spectrum is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-3ce4b5a8398c5a9b4eef9994e4fd7451815767e9008800cd013588cf014fd9973</citedby><cites>FETCH-LOGICAL-c490t-3ce4b5a8398c5a9b4eef9994e4fd7451815767e9008800cd013588cf014fd9973</cites><orcidid>0000-0002-8504-6555</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00291-018-0540-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00291-018-0540-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zhou-Kangas, Yue</creatorcontrib><creatorcontrib>Miettinen, Kaisa</creatorcontrib><title>Decision making in multiobjective optimization problems under uncertainty: balancing between robustness and quality</title><title>OR Spectrum</title><addtitle>OR Spectrum</addtitle><description>As an emerging research field, multiobjective robust optimization employs minmax robustness as the most commonly used concept. Light robustness is a concept in which a parameter, tolerable degradations, can be used to control the loss in the objective function values in the most typical scenario for gaining in robustness. In this paper, we develop a lightly robust interactive multiobjective optimization method, LiRoMo, to support a decision maker to find a most preferred lightly robust efficient solution with a good balance between robustness and the objective function values in the most typical scenario. In LiRoMo, we formulate a lightly robust subproblem utilizing an achievement scalarizing function which involves a reference point specified by the decision maker. With this subproblem, we compute lightly robust efficient solutions with respect to the decision maker’s preferences. With LiRoMo, we support the decision maker in understanding the lightly robust efficient solutions with an augmented value path visualization. We use two measures ‘price to be paid for robustness’ and ‘gain in robustness’ to support the decision maker in considering the trade-offs between robustness and quality. As an example to illustrate the advantages of the method, we formulate and solve a simple investment portfolio optimization problem.</description><subject>Business and Management</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Decision making</subject><subject>Economic models</subject><subject>Hierarchies</subject><subject>Mathematical programming</subject><subject>Multiple objective analysis</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Regular Article</subject><subject>Robustness (mathematics)</subject><issn>0171-6468</issn><issn>1436-6304</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kD1PwzAQhi0EEqXwA9giMQfOjRPbbKh8SpVYYLYc51K5pE5rO6Dy63EUJCYWn4fnfe_0EHJJ4ZoC8JsAsJA0BypyKBnk7IjMKCuqvCqAHZMZUE7zilXilJyFsAEoOS_EjIR7NDbY3mVb_WHdOrPpN3TR9vUGTbSfmPW7aLf2W8eR2vm-7nAbssE16NNr0EdtXTzcZrXutDNjSY3xC9FlCR5CdBhCpl2T7Qfd2Xg4Jyet7gJe_M45eX98eFs-56vXp5fl3So3TELMC4OsLrUopDClljVDbKWUDFnbcFZSQUtecZQAQgCYBmhRCmFaoAmQkhdzcjX1pqP3A4aoNv3gXVqpFrRgIKqqrBJFJ8r4PgSPrdp5u9X-oCio0a2a3KrkVo1uFUuZxZQJiXVr9H_N_4d-AMwLfmc</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Zhou-Kangas, Yue</creator><creator>Miettinen, Kaisa</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7TA</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L7M</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-8504-6555</orcidid></search><sort><creationdate>20190601</creationdate><title>Decision making in multiobjective optimization problems under uncertainty: balancing between robustness and quality</title><author>Zhou-Kangas, Yue ; Miettinen, Kaisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-3ce4b5a8398c5a9b4eef9994e4fd7451815767e9008800cd013588cf014fd9973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Business and Management</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Decision making</topic><topic>Economic models</topic><topic>Hierarchies</topic><topic>Mathematical programming</topic><topic>Multiple objective analysis</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Regular Article</topic><topic>Robustness (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou-Kangas, Yue</creatorcontrib><creatorcontrib>Miettinen, Kaisa</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics & Communications Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>OR Spectrum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou-Kangas, Yue</au><au>Miettinen, Kaisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decision making in multiobjective optimization problems under uncertainty: balancing between robustness and quality</atitle><jtitle>OR Spectrum</jtitle><stitle>OR Spectrum</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>41</volume><issue>2</issue><spage>391</spage><epage>413</epage><pages>391-413</pages><issn>0171-6468</issn><eissn>1436-6304</eissn><abstract>As an emerging research field, multiobjective robust optimization employs minmax robustness as the most commonly used concept. Light robustness is a concept in which a parameter, tolerable degradations, can be used to control the loss in the objective function values in the most typical scenario for gaining in robustness. In this paper, we develop a lightly robust interactive multiobjective optimization method, LiRoMo, to support a decision maker to find a most preferred lightly robust efficient solution with a good balance between robustness and the objective function values in the most typical scenario. In LiRoMo, we formulate a lightly robust subproblem utilizing an achievement scalarizing function which involves a reference point specified by the decision maker. With this subproblem, we compute lightly robust efficient solutions with respect to the decision maker’s preferences. With LiRoMo, we support the decision maker in understanding the lightly robust efficient solutions with an augmented value path visualization. We use two measures ‘price to be paid for robustness’ and ‘gain in robustness’ to support the decision maker in considering the trade-offs between robustness and quality. As an example to illustrate the advantages of the method, we formulate and solve a simple investment portfolio optimization problem.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00291-018-0540-4</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-8504-6555</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0171-6468 |
ispartof | OR Spectrum, 2019-06, Vol.41 (2), p.391-413 |
issn | 0171-6468 1436-6304 |
language | eng |
recordid | cdi_proquest_journals_2134086656 |
source | SpringerLink Journals; EBSCOhost Business Source Complete |
subjects | Business and Management Calculus of Variations and Optimal Control Optimization Decision making Economic models Hierarchies Mathematical programming Multiple objective analysis Operations Research/Decision Theory Optimization Regular Article Robustness (mathematics) |
title | Decision making in multiobjective optimization problems under uncertainty: balancing between robustness and quality |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T07%3A00%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decision%20making%20in%20multiobjective%20optimization%20problems%20under%20uncertainty:%20balancing%20between%20robustness%20and%20quality&rft.jtitle=OR%20Spectrum&rft.au=Zhou-Kangas,%20Yue&rft.date=2019-06-01&rft.volume=41&rft.issue=2&rft.spage=391&rft.epage=413&rft.pages=391-413&rft.issn=0171-6468&rft.eissn=1436-6304&rft_id=info:doi/10.1007/s00291-018-0540-4&rft_dat=%3Cproquest_cross%3E2134086656%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2134086656&rft_id=info:pmid/&rfr_iscdi=true |