Nuclear Parton Distributions from Neural Networks

In this contribution we present a status report on the recent progress towards an analysis of nuclear parton distribution functions (nPDFs) using the NNPDF methodology. We discuss how the NNPDF fitting approach can be extended to account for the dependence on the atomic mass number \(A\), and introd...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-11
Hauptverfasser: Rabah Abdul Khalek, Ethier, Jacob J, Rojo, Juan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Rabah Abdul Khalek
Ethier, Jacob J
Rojo, Juan
description In this contribution we present a status report on the recent progress towards an analysis of nuclear parton distribution functions (nPDFs) using the NNPDF methodology. We discuss how the NNPDF fitting approach can be extended to account for the dependence on the atomic mass number \(A\), and introduce novel algorithms to improve the training of the neural network parameters within the NNPDF framework. Finally, we present preliminary results of a nPDF fit to neutral current deep-inelastic lepton-nucleus scattering data, and demonstrate how one can validate the new fitting methodology by means of closure tests.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2133673541</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2133673541</sourcerecordid><originalsourceid>FETCH-proquest_journals_21336735413</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw9CtNzklNLFIISCwqyc9TcMksLinKTCotyczPK1ZIK8rPVfBLLS1KzAFSJeX5RdnFPAysaYk5xam8UJqbQdnNNcTZQ7egKL-wNLW4JD4rv7QoDygVb2RobGxmbmxqYmhMnCoAyLEzxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2133673541</pqid></control><display><type>article</type><title>Nuclear Parton Distributions from Neural Networks</title><source>Free E- Journals</source><creator>Rabah Abdul Khalek ; Ethier, Jacob J ; Rojo, Juan</creator><creatorcontrib>Rabah Abdul Khalek ; Ethier, Jacob J ; Rojo, Juan</creatorcontrib><description>In this contribution we present a status report on the recent progress towards an analysis of nuclear parton distribution functions (nPDFs) using the NNPDF methodology. We discuss how the NNPDF fitting approach can be extended to account for the dependence on the atomic mass number \(A\), and introduce novel algorithms to improve the training of the neural network parameters within the NNPDF framework. Finally, we present preliminary results of a nPDF fit to neutral current deep-inelastic lepton-nucleus scattering data, and demonstrate how one can validate the new fitting methodology by means of closure tests.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Atomic properties ; Dependence ; Distribution functions ; Inelastic scattering ; Leptons ; Neural networks ; Neutral currents</subject><ispartof>arXiv.org, 2018-11</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Rabah Abdul Khalek</creatorcontrib><creatorcontrib>Ethier, Jacob J</creatorcontrib><creatorcontrib>Rojo, Juan</creatorcontrib><title>Nuclear Parton Distributions from Neural Networks</title><title>arXiv.org</title><description>In this contribution we present a status report on the recent progress towards an analysis of nuclear parton distribution functions (nPDFs) using the NNPDF methodology. We discuss how the NNPDF fitting approach can be extended to account for the dependence on the atomic mass number \(A\), and introduce novel algorithms to improve the training of the neural network parameters within the NNPDF framework. Finally, we present preliminary results of a nPDF fit to neutral current deep-inelastic lepton-nucleus scattering data, and demonstrate how one can validate the new fitting methodology by means of closure tests.</description><subject>Algorithms</subject><subject>Atomic properties</subject><subject>Dependence</subject><subject>Distribution functions</subject><subject>Inelastic scattering</subject><subject>Leptons</subject><subject>Neural networks</subject><subject>Neutral currents</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw9CtNzklNLFIISCwqyc9TcMksLinKTCotyczPK1ZIK8rPVfBLLS1KzAFSJeX5RdnFPAysaYk5xam8UJqbQdnNNcTZQ7egKL-wNLW4JD4rv7QoDygVb2RobGxmbmxqYmhMnCoAyLEzxQ</recordid><startdate>20181114</startdate><enddate>20181114</enddate><creator>Rabah Abdul Khalek</creator><creator>Ethier, Jacob J</creator><creator>Rojo, Juan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20181114</creationdate><title>Nuclear Parton Distributions from Neural Networks</title><author>Rabah Abdul Khalek ; Ethier, Jacob J ; Rojo, Juan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21336735413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Atomic properties</topic><topic>Dependence</topic><topic>Distribution functions</topic><topic>Inelastic scattering</topic><topic>Leptons</topic><topic>Neural networks</topic><topic>Neutral currents</topic><toplevel>online_resources</toplevel><creatorcontrib>Rabah Abdul Khalek</creatorcontrib><creatorcontrib>Ethier, Jacob J</creatorcontrib><creatorcontrib>Rojo, Juan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rabah Abdul Khalek</au><au>Ethier, Jacob J</au><au>Rojo, Juan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Nuclear Parton Distributions from Neural Networks</atitle><jtitle>arXiv.org</jtitle><date>2018-11-14</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>In this contribution we present a status report on the recent progress towards an analysis of nuclear parton distribution functions (nPDFs) using the NNPDF methodology. We discuss how the NNPDF fitting approach can be extended to account for the dependence on the atomic mass number \(A\), and introduce novel algorithms to improve the training of the neural network parameters within the NNPDF framework. Finally, we present preliminary results of a nPDF fit to neutral current deep-inelastic lepton-nucleus scattering data, and demonstrate how one can validate the new fitting methodology by means of closure tests.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2018-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2133673541
source Free E- Journals
subjects Algorithms
Atomic properties
Dependence
Distribution functions
Inelastic scattering
Leptons
Neural networks
Neutral currents
title Nuclear Parton Distributions from Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T01%3A36%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Nuclear%20Parton%20Distributions%20from%20Neural%20Networks&rft.jtitle=arXiv.org&rft.au=Rabah%20Abdul%20Khalek&rft.date=2018-11-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2133673541%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2133673541&rft_id=info:pmid/&rfr_iscdi=true