Nuclear Parton Distributions from Neural Networks
In this contribution we present a status report on the recent progress towards an analysis of nuclear parton distribution functions (nPDFs) using the NNPDF methodology. We discuss how the NNPDF fitting approach can be extended to account for the dependence on the atomic mass number \(A\), and introd...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2018-11 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Rabah Abdul Khalek Ethier, Jacob J Rojo, Juan |
description | In this contribution we present a status report on the recent progress towards an analysis of nuclear parton distribution functions (nPDFs) using the NNPDF methodology. We discuss how the NNPDF fitting approach can be extended to account for the dependence on the atomic mass number \(A\), and introduce novel algorithms to improve the training of the neural network parameters within the NNPDF framework. Finally, we present preliminary results of a nPDF fit to neutral current deep-inelastic lepton-nucleus scattering data, and demonstrate how one can validate the new fitting methodology by means of closure tests. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2133673541</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2133673541</sourcerecordid><originalsourceid>FETCH-proquest_journals_21336735413</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw9CtNzklNLFIISCwqyc9TcMksLinKTCotyczPK1ZIK8rPVfBLLS1KzAFSJeX5RdnFPAysaYk5xam8UJqbQdnNNcTZQ7egKL-wNLW4JD4rv7QoDygVb2RobGxmbmxqYmhMnCoAyLEzxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2133673541</pqid></control><display><type>article</type><title>Nuclear Parton Distributions from Neural Networks</title><source>Free E- Journals</source><creator>Rabah Abdul Khalek ; Ethier, Jacob J ; Rojo, Juan</creator><creatorcontrib>Rabah Abdul Khalek ; Ethier, Jacob J ; Rojo, Juan</creatorcontrib><description>In this contribution we present a status report on the recent progress towards an analysis of nuclear parton distribution functions (nPDFs) using the NNPDF methodology. We discuss how the NNPDF fitting approach can be extended to account for the dependence on the atomic mass number \(A\), and introduce novel algorithms to improve the training of the neural network parameters within the NNPDF framework. Finally, we present preliminary results of a nPDF fit to neutral current deep-inelastic lepton-nucleus scattering data, and demonstrate how one can validate the new fitting methodology by means of closure tests.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Atomic properties ; Dependence ; Distribution functions ; Inelastic scattering ; Leptons ; Neural networks ; Neutral currents</subject><ispartof>arXiv.org, 2018-11</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Rabah Abdul Khalek</creatorcontrib><creatorcontrib>Ethier, Jacob J</creatorcontrib><creatorcontrib>Rojo, Juan</creatorcontrib><title>Nuclear Parton Distributions from Neural Networks</title><title>arXiv.org</title><description>In this contribution we present a status report on the recent progress towards an analysis of nuclear parton distribution functions (nPDFs) using the NNPDF methodology. We discuss how the NNPDF fitting approach can be extended to account for the dependence on the atomic mass number \(A\), and introduce novel algorithms to improve the training of the neural network parameters within the NNPDF framework. Finally, we present preliminary results of a nPDF fit to neutral current deep-inelastic lepton-nucleus scattering data, and demonstrate how one can validate the new fitting methodology by means of closure tests.</description><subject>Algorithms</subject><subject>Atomic properties</subject><subject>Dependence</subject><subject>Distribution functions</subject><subject>Inelastic scattering</subject><subject>Leptons</subject><subject>Neural networks</subject><subject>Neutral currents</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw9CtNzklNLFIISCwqyc9TcMksLinKTCotyczPK1ZIK8rPVfBLLS1KzAFSJeX5RdnFPAysaYk5xam8UJqbQdnNNcTZQ7egKL-wNLW4JD4rv7QoDygVb2RobGxmbmxqYmhMnCoAyLEzxQ</recordid><startdate>20181114</startdate><enddate>20181114</enddate><creator>Rabah Abdul Khalek</creator><creator>Ethier, Jacob J</creator><creator>Rojo, Juan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20181114</creationdate><title>Nuclear Parton Distributions from Neural Networks</title><author>Rabah Abdul Khalek ; Ethier, Jacob J ; Rojo, Juan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21336735413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Atomic properties</topic><topic>Dependence</topic><topic>Distribution functions</topic><topic>Inelastic scattering</topic><topic>Leptons</topic><topic>Neural networks</topic><topic>Neutral currents</topic><toplevel>online_resources</toplevel><creatorcontrib>Rabah Abdul Khalek</creatorcontrib><creatorcontrib>Ethier, Jacob J</creatorcontrib><creatorcontrib>Rojo, Juan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rabah Abdul Khalek</au><au>Ethier, Jacob J</au><au>Rojo, Juan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Nuclear Parton Distributions from Neural Networks</atitle><jtitle>arXiv.org</jtitle><date>2018-11-14</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>In this contribution we present a status report on the recent progress towards an analysis of nuclear parton distribution functions (nPDFs) using the NNPDF methodology. We discuss how the NNPDF fitting approach can be extended to account for the dependence on the atomic mass number \(A\), and introduce novel algorithms to improve the training of the neural network parameters within the NNPDF framework. Finally, we present preliminary results of a nPDF fit to neutral current deep-inelastic lepton-nucleus scattering data, and demonstrate how one can validate the new fitting methodology by means of closure tests.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2018-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2133673541 |
source | Free E- Journals |
subjects | Algorithms Atomic properties Dependence Distribution functions Inelastic scattering Leptons Neural networks Neutral currents |
title | Nuclear Parton Distributions from Neural Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T01%3A36%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Nuclear%20Parton%20Distributions%20from%20Neural%20Networks&rft.jtitle=arXiv.org&rft.au=Rabah%20Abdul%20Khalek&rft.date=2018-11-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2133673541%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2133673541&rft_id=info:pmid/&rfr_iscdi=true |