Large-scale magnetostatic field calculation in finite element micromagnetics with H2-matrices
Magnetostatic field calculations in micromagnetic simulations can be numerically expensive, particularly in the case of large-scale finite element simulations. The established finite element / boundary element method (FEM/BEM) by Fredkin & Koehler involves a densely populated matrix with unaccep...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-01 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Hertel, Riccardo Christophersen, Sven Börm, Steffen |
description | Magnetostatic field calculations in micromagnetic simulations can be numerically expensive, particularly in the case of large-scale finite element simulations. The established finite element / boundary element method (FEM/BEM) by Fredkin & Koehler involves a densely populated matrix with unacceptable numerical costs for problems involving a large number of degrees of freedom \(N\). By using hierarchical matrices of \(\mathcal{H}^2\) type, we show that the memory requirements for the FEM/BEM method can be reduced dramatically, effectively converting the quadratic complexity \(\mathcal{O}(N^2)\) of the problem to a linear one \(\mathcal{O}(N)\). We obtain matrix size reductions of nearly \(99\%\) in test cases with more than \(10^6\) degrees of freedom, and we test the computed magnetostatic energy values by means of comparison with analytic values. The efficiency of the \(\mathcal{H}^2\)-matrix compression opens the way to large-scale magnetostatic field calculations in micromagnetic modeling, all while preserving the accuracy of the established FEM/BEM formalism. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2133666784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2133666784</sourcerecordid><originalsourceid>FETCH-proquest_journals_21336667843</originalsourceid><addsrcrecordid>eNqNi8sKwjAUBYMgWLT_cMF1oE3atHtRunDpViTE25qShyYp_r4B_QBXB2bmrEjBOK9p3zC2IWWMc1VVTHSsbXlBrmcZJqRRSYNg5eQw-Zhk0gpGjeYOWajFZOAdaJeh0wkBDVp0CaxWwX9vWkV46_SAgVErU9AK446sR2kilr_dkv3peDkM9Bn8a8GYbrNfgsvqxmrOhRBd3_D_qg9ZGURU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2133666784</pqid></control><display><type>article</type><title>Large-scale magnetostatic field calculation in finite element micromagnetics with H2-matrices</title><source>Free E- Journals</source><creator>Hertel, Riccardo ; Christophersen, Sven ; Börm, Steffen</creator><creatorcontrib>Hertel, Riccardo ; Christophersen, Sven ; Börm, Steffen</creatorcontrib><description>Magnetostatic field calculations in micromagnetic simulations can be numerically expensive, particularly in the case of large-scale finite element simulations. The established finite element / boundary element method (FEM/BEM) by Fredkin & Koehler involves a densely populated matrix with unacceptable numerical costs for problems involving a large number of degrees of freedom \(N\). By using hierarchical matrices of \(\mathcal{H}^2\) type, we show that the memory requirements for the FEM/BEM method can be reduced dramatically, effectively converting the quadratic complexity \(\mathcal{O}(N^2)\) of the problem to a linear one \(\mathcal{O}(N)\). We obtain matrix size reductions of nearly \(99\%\) in test cases with more than \(10^6\) degrees of freedom, and we test the computed magnetostatic energy values by means of comparison with analytic values. The efficiency of the \(\mathcal{H}^2\)-matrix compression opens the way to large-scale magnetostatic field calculations in micromagnetic modeling, all while preserving the accuracy of the established FEM/BEM formalism.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Boundary element method ; Computer simulation ; Degrees of freedom ; Energy conversion efficiency ; Finite element method ; Magnetostatic fields ; Mathematical analysis ; Mathematical models ; Matrix methods ; Model accuracy ; Nonlinear programming</subject><ispartof>arXiv.org, 2019-01</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Hertel, Riccardo</creatorcontrib><creatorcontrib>Christophersen, Sven</creatorcontrib><creatorcontrib>Börm, Steffen</creatorcontrib><title>Large-scale magnetostatic field calculation in finite element micromagnetics with H2-matrices</title><title>arXiv.org</title><description>Magnetostatic field calculations in micromagnetic simulations can be numerically expensive, particularly in the case of large-scale finite element simulations. The established finite element / boundary element method (FEM/BEM) by Fredkin & Koehler involves a densely populated matrix with unacceptable numerical costs for problems involving a large number of degrees of freedom \(N\). By using hierarchical matrices of \(\mathcal{H}^2\) type, we show that the memory requirements for the FEM/BEM method can be reduced dramatically, effectively converting the quadratic complexity \(\mathcal{O}(N^2)\) of the problem to a linear one \(\mathcal{O}(N)\). We obtain matrix size reductions of nearly \(99\%\) in test cases with more than \(10^6\) degrees of freedom, and we test the computed magnetostatic energy values by means of comparison with analytic values. The efficiency of the \(\mathcal{H}^2\)-matrix compression opens the way to large-scale magnetostatic field calculations in micromagnetic modeling, all while preserving the accuracy of the established FEM/BEM formalism.</description><subject>Boundary element method</subject><subject>Computer simulation</subject><subject>Degrees of freedom</subject><subject>Energy conversion efficiency</subject><subject>Finite element method</subject><subject>Magnetostatic fields</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Matrix methods</subject><subject>Model accuracy</subject><subject>Nonlinear programming</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi8sKwjAUBYMgWLT_cMF1oE3atHtRunDpViTE25qShyYp_r4B_QBXB2bmrEjBOK9p3zC2IWWMc1VVTHSsbXlBrmcZJqRRSYNg5eQw-Zhk0gpGjeYOWajFZOAdaJeh0wkBDVp0CaxWwX9vWkV46_SAgVErU9AK446sR2kilr_dkv3peDkM9Bn8a8GYbrNfgsvqxmrOhRBd3_D_qg9ZGURU</recordid><startdate>20190112</startdate><enddate>20190112</enddate><creator>Hertel, Riccardo</creator><creator>Christophersen, Sven</creator><creator>Börm, Steffen</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190112</creationdate><title>Large-scale magnetostatic field calculation in finite element micromagnetics with H2-matrices</title><author>Hertel, Riccardo ; Christophersen, Sven ; Börm, Steffen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21336667843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Boundary element method</topic><topic>Computer simulation</topic><topic>Degrees of freedom</topic><topic>Energy conversion efficiency</topic><topic>Finite element method</topic><topic>Magnetostatic fields</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Matrix methods</topic><topic>Model accuracy</topic><topic>Nonlinear programming</topic><toplevel>online_resources</toplevel><creatorcontrib>Hertel, Riccardo</creatorcontrib><creatorcontrib>Christophersen, Sven</creatorcontrib><creatorcontrib>Börm, Steffen</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hertel, Riccardo</au><au>Christophersen, Sven</au><au>Börm, Steffen</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Large-scale magnetostatic field calculation in finite element micromagnetics with H2-matrices</atitle><jtitle>arXiv.org</jtitle><date>2019-01-12</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Magnetostatic field calculations in micromagnetic simulations can be numerically expensive, particularly in the case of large-scale finite element simulations. The established finite element / boundary element method (FEM/BEM) by Fredkin & Koehler involves a densely populated matrix with unacceptable numerical costs for problems involving a large number of degrees of freedom \(N\). By using hierarchical matrices of \(\mathcal{H}^2\) type, we show that the memory requirements for the FEM/BEM method can be reduced dramatically, effectively converting the quadratic complexity \(\mathcal{O}(N^2)\) of the problem to a linear one \(\mathcal{O}(N)\). We obtain matrix size reductions of nearly \(99\%\) in test cases with more than \(10^6\) degrees of freedom, and we test the computed magnetostatic energy values by means of comparison with analytic values. The efficiency of the \(\mathcal{H}^2\)-matrix compression opens the way to large-scale magnetostatic field calculations in micromagnetic modeling, all while preserving the accuracy of the established FEM/BEM formalism.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2133666784 |
source | Free E- Journals |
subjects | Boundary element method Computer simulation Degrees of freedom Energy conversion efficiency Finite element method Magnetostatic fields Mathematical analysis Mathematical models Matrix methods Model accuracy Nonlinear programming |
title | Large-scale magnetostatic field calculation in finite element micromagnetics with H2-matrices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T18%3A13%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Large-scale%20magnetostatic%20field%20calculation%20in%20finite%20element%20micromagnetics%20with%20H2-matrices&rft.jtitle=arXiv.org&rft.au=Hertel,%20Riccardo&rft.date=2019-01-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2133666784%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2133666784&rft_id=info:pmid/&rfr_iscdi=true |