Recursive decentralized localization for multi-robot systems with asynchronous pairwise communication
This paper provides a fully decentralized algorithm for collaborative localization based on the extended Kalman filter. The major challenge in decentralized collaborative localization is to track inter-robot dependencies, which is particularly difficult when sustained synchronous communication betwe...
Gespeichert in:
Veröffentlicht in: | The International journal of robotics research 2018-09, Vol.37 (10), p.1152-1167 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1167 |
---|---|
container_issue | 10 |
container_start_page | 1152 |
container_title | The International journal of robotics research |
container_volume | 37 |
creator | Luft, Lukas Schubert, Tobias Roumeliotis, Stergios I. Burgard, Wolfram |
description | This paper provides a fully decentralized algorithm for collaborative localization based on the extended Kalman filter. The major challenge in decentralized collaborative localization is to track inter-robot dependencies, which is particularly difficult when sustained synchronous communication between the robots cannot be guaranteed. Current approaches suffer from the need for particular communication schemes, extensive bookkeeping of measurements, overly conservative assumptions, or the restriction to specific measurement models. This paper introduces a localization algorithm that is able to approximate the inter-robot correlations while fulfilling all of the following conditions: communication is limited to two robots that obtain a relative measurement, the algorithm is recursive in the sense that it does not require storage of measurements and each robot maintains only the latest estimate of its own pose, and it supports generic measurement models. The fact that the proposed approach can handle these particularly difficult conditions ensures that it is applicable to a wide range of multi-robot scenarios. We provide mathematical details on our approximation. Extensive experiments carried out using real-world datasets demonstrate the improved performance of our method compared with several existing approaches. |
doi_str_mv | 10.1177/0278364918760698 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2133266107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0278364918760698</sage_id><sourcerecordid>2133266107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-81c33bc9ce5de4ded305cf3dae49d9b79e3f4ddf853daf7a6e60cbdbe3c953c53</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMouK7ePQY8V5NNmzRHWfwCQRA9l3QydbO0zZqkLutfb-sKguBphnm_9wYeIeecXXKu1BVbqFLIXPNSSSZ1eUBmXOU8E1zJQzKb5GzSj8lJjGvGmJBMzwg-Iwwhug-kFgH7FEzrPtHS1sO0meR8TxsfaDe0yWXB1z7RuIsJu0i3Lq2oibseVsH3foh0Y1zYuogUfNcNvYPvgFNy1Jg24tnPnJPX25uX5X32-HT3sLx-zEAwnbKSgxA1aMDCYm7RClZAI6zBXFtdK42iya1tymK8NcpIlAxqW6MAXQgoxJxc7HM3wb8PGFO19kPox5fVgguxkJIzNVJsT0HwMQZsqk1wnQm7irNqKrP6W-ZoyfaWaN7wN_Rf_guGrHiJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2133266107</pqid></control><display><type>article</type><title>Recursive decentralized localization for multi-robot systems with asynchronous pairwise communication</title><source>Access via SAGE</source><creator>Luft, Lukas ; Schubert, Tobias ; Roumeliotis, Stergios I. ; Burgard, Wolfram</creator><creatorcontrib>Luft, Lukas ; Schubert, Tobias ; Roumeliotis, Stergios I. ; Burgard, Wolfram</creatorcontrib><description>This paper provides a fully decentralized algorithm for collaborative localization based on the extended Kalman filter. The major challenge in decentralized collaborative localization is to track inter-robot dependencies, which is particularly difficult when sustained synchronous communication between the robots cannot be guaranteed. Current approaches suffer from the need for particular communication schemes, extensive bookkeeping of measurements, overly conservative assumptions, or the restriction to specific measurement models. This paper introduces a localization algorithm that is able to approximate the inter-robot correlations while fulfilling all of the following conditions: communication is limited to two robots that obtain a relative measurement, the algorithm is recursive in the sense that it does not require storage of measurements and each robot maintains only the latest estimate of its own pose, and it supports generic measurement models. The fact that the proposed approach can handle these particularly difficult conditions ensures that it is applicable to a wide range of multi-robot scenarios. We provide mathematical details on our approximation. Extensive experiments carried out using real-world datasets demonstrate the improved performance of our method compared with several existing approaches.</description><identifier>ISSN: 0278-3649</identifier><identifier>EISSN: 1741-3176</identifier><identifier>DOI: 10.1177/0278364918760698</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Algorithms ; Collaboration ; Communication ; Extended Kalman filter ; Localization ; Mathematical models ; Multiple robots ; Robots</subject><ispartof>The International journal of robotics research, 2018-09, Vol.37 (10), p.1152-1167</ispartof><rights>The Author(s) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-81c33bc9ce5de4ded305cf3dae49d9b79e3f4ddf853daf7a6e60cbdbe3c953c53</citedby><cites>FETCH-LOGICAL-c309t-81c33bc9ce5de4ded305cf3dae49d9b79e3f4ddf853daf7a6e60cbdbe3c953c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0278364918760698$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0278364918760698$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Luft, Lukas</creatorcontrib><creatorcontrib>Schubert, Tobias</creatorcontrib><creatorcontrib>Roumeliotis, Stergios I.</creatorcontrib><creatorcontrib>Burgard, Wolfram</creatorcontrib><title>Recursive decentralized localization for multi-robot systems with asynchronous pairwise communication</title><title>The International journal of robotics research</title><description>This paper provides a fully decentralized algorithm for collaborative localization based on the extended Kalman filter. The major challenge in decentralized collaborative localization is to track inter-robot dependencies, which is particularly difficult when sustained synchronous communication between the robots cannot be guaranteed. Current approaches suffer from the need for particular communication schemes, extensive bookkeeping of measurements, overly conservative assumptions, or the restriction to specific measurement models. This paper introduces a localization algorithm that is able to approximate the inter-robot correlations while fulfilling all of the following conditions: communication is limited to two robots that obtain a relative measurement, the algorithm is recursive in the sense that it does not require storage of measurements and each robot maintains only the latest estimate of its own pose, and it supports generic measurement models. The fact that the proposed approach can handle these particularly difficult conditions ensures that it is applicable to a wide range of multi-robot scenarios. We provide mathematical details on our approximation. Extensive experiments carried out using real-world datasets demonstrate the improved performance of our method compared with several existing approaches.</description><subject>Algorithms</subject><subject>Collaboration</subject><subject>Communication</subject><subject>Extended Kalman filter</subject><subject>Localization</subject><subject>Mathematical models</subject><subject>Multiple robots</subject><subject>Robots</subject><issn>0278-3649</issn><issn>1741-3176</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LxDAQxYMouK7ePQY8V5NNmzRHWfwCQRA9l3QydbO0zZqkLutfb-sKguBphnm_9wYeIeecXXKu1BVbqFLIXPNSSSZ1eUBmXOU8E1zJQzKb5GzSj8lJjGvGmJBMzwg-Iwwhug-kFgH7FEzrPtHS1sO0meR8TxsfaDe0yWXB1z7RuIsJu0i3Lq2oibseVsH3foh0Y1zYuogUfNcNvYPvgFNy1Jg24tnPnJPX25uX5X32-HT3sLx-zEAwnbKSgxA1aMDCYm7RClZAI6zBXFtdK42iya1tymK8NcpIlAxqW6MAXQgoxJxc7HM3wb8PGFO19kPox5fVgguxkJIzNVJsT0HwMQZsqk1wnQm7irNqKrP6W-ZoyfaWaN7wN_Rf_guGrHiJ</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Luft, Lukas</creator><creator>Schubert, Tobias</creator><creator>Roumeliotis, Stergios I.</creator><creator>Burgard, Wolfram</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201809</creationdate><title>Recursive decentralized localization for multi-robot systems with asynchronous pairwise communication</title><author>Luft, Lukas ; Schubert, Tobias ; Roumeliotis, Stergios I. ; Burgard, Wolfram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-81c33bc9ce5de4ded305cf3dae49d9b79e3f4ddf853daf7a6e60cbdbe3c953c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Collaboration</topic><topic>Communication</topic><topic>Extended Kalman filter</topic><topic>Localization</topic><topic>Mathematical models</topic><topic>Multiple robots</topic><topic>Robots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luft, Lukas</creatorcontrib><creatorcontrib>Schubert, Tobias</creatorcontrib><creatorcontrib>Roumeliotis, Stergios I.</creatorcontrib><creatorcontrib>Burgard, Wolfram</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>The International journal of robotics research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luft, Lukas</au><au>Schubert, Tobias</au><au>Roumeliotis, Stergios I.</au><au>Burgard, Wolfram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recursive decentralized localization for multi-robot systems with asynchronous pairwise communication</atitle><jtitle>The International journal of robotics research</jtitle><date>2018-09</date><risdate>2018</risdate><volume>37</volume><issue>10</issue><spage>1152</spage><epage>1167</epage><pages>1152-1167</pages><issn>0278-3649</issn><eissn>1741-3176</eissn><abstract>This paper provides a fully decentralized algorithm for collaborative localization based on the extended Kalman filter. The major challenge in decentralized collaborative localization is to track inter-robot dependencies, which is particularly difficult when sustained synchronous communication between the robots cannot be guaranteed. Current approaches suffer from the need for particular communication schemes, extensive bookkeeping of measurements, overly conservative assumptions, or the restriction to specific measurement models. This paper introduces a localization algorithm that is able to approximate the inter-robot correlations while fulfilling all of the following conditions: communication is limited to two robots that obtain a relative measurement, the algorithm is recursive in the sense that it does not require storage of measurements and each robot maintains only the latest estimate of its own pose, and it supports generic measurement models. The fact that the proposed approach can handle these particularly difficult conditions ensures that it is applicable to a wide range of multi-robot scenarios. We provide mathematical details on our approximation. Extensive experiments carried out using real-world datasets demonstrate the improved performance of our method compared with several existing approaches.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0278364918760698</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-3649 |
ispartof | The International journal of robotics research, 2018-09, Vol.37 (10), p.1152-1167 |
issn | 0278-3649 1741-3176 |
language | eng |
recordid | cdi_proquest_journals_2133266107 |
source | Access via SAGE |
subjects | Algorithms Collaboration Communication Extended Kalman filter Localization Mathematical models Multiple robots Robots |
title | Recursive decentralized localization for multi-robot systems with asynchronous pairwise communication |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A51%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recursive%20decentralized%20localization%20for%20multi-robot%20systems%20with%20asynchronous%20pairwise%20communication&rft.jtitle=The%20International%20journal%20of%20robotics%20research&rft.au=Luft,%20Lukas&rft.date=2018-09&rft.volume=37&rft.issue=10&rft.spage=1152&rft.epage=1167&rft.pages=1152-1167&rft.issn=0278-3649&rft.eissn=1741-3176&rft_id=info:doi/10.1177/0278364918760698&rft_dat=%3Cproquest_cross%3E2133266107%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2133266107&rft_id=info:pmid/&rft_sage_id=10.1177_0278364918760698&rfr_iscdi=true |