Improved Mean Methods of Imputation
Replacing missing values of a variable with the mean of the non-missing values is a simple and natural way to impute values fortunately in the case where data is missing completely at random. Following a short review of this method we consider thus possible improvements, are called the shrinkage met...
Gespeichert in:
Veröffentlicht in: | Statistics, optimization & information computing optimization & information computing, 2018-11, Vol.6 (4), p.526 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 526 |
container_title | Statistics, optimization & information computing |
container_volume | 6 |
creator | Mohamed, Choukri A. Sedory, Stephen Singh, Sarjinder |
description | Replacing missing values of a variable with the mean of the non-missing values is a simple and natural way to impute values fortunately in the case where data is missing completely at random. Following a short review of this method we consider thus possible improvements, are called the shrinkage method, a second called the weighted interval method, and a third called the known variance method. Estimates of the population mean obtained from each of these methods are compared to the mean method both analytically and by means of numerical examples. |
doi_str_mv | 10.19139/soic.v6i4.281 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2132804097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2132804097</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1127-3bdff24a350ec79b06287905a552ce9b80d4169f180ffdcd960db4bb5a886b503</originalsourceid><addsrcrecordid>eNotkEtLw0AUhQdRsNRuXQe6Trx3HsnMUoqPQsWNgrthnphiMzWTFPz3po_NuQfO4d7LR8g9QoUKmXrIqXXVoW55RSVekRllCKWABq5PHksA_nVLFjlvAQAbIWqgM7Jc7_Z9OgRfvAXTTTJ8J5-LFIspGAcztKm7IzfR_OSwuMw5-Xx--li9lpv3l_XqcVM6RNqUzPoYKTdMQHCNslBT2SgQRgjqgrISPMdaRZQQo3de1eAtt1YYKWsrgM3J8rx3-uh3DHnQ2zT23XRSU2RUAgfVTK3q3HJ9yrkPUe_7dmf6P42gTyz0kYU-stATC_YPk8lREg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132804097</pqid></control><display><type>article</type><title>Improved Mean Methods of Imputation</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Mohamed, Choukri ; A. Sedory, Stephen ; Singh, Sarjinder</creator><creatorcontrib>Mohamed, Choukri ; A. Sedory, Stephen ; Singh, Sarjinder</creatorcontrib><description>Replacing missing values of a variable with the mean of the non-missing values is a simple and natural way to impute values fortunately in the case where data is missing completely at random. Following a short review of this method we consider thus possible improvements, are called the shrinkage method, a second called the weighted interval method, and a third called the known variance method. Estimates of the population mean obtained from each of these methods are compared to the mean method both analytically and by means of numerical examples.</description><identifier>ISSN: 2311-004X</identifier><identifier>EISSN: 2310-5070</identifier><identifier>DOI: 10.19139/soic.v6i4.281</identifier><language>eng</language><publisher>Hong Kong: International Academic Press (Hong Kong)</publisher><subject>Missing data ; Shrinkage</subject><ispartof>Statistics, optimization & information computing, 2018-11, Vol.6 (4), p.526</ispartof><rights>(c) 2018. This work is licensed under CC BY 3.0 Unported - https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1127-3bdff24a350ec79b06287905a552ce9b80d4169f180ffdcd960db4bb5a886b503</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Mohamed, Choukri</creatorcontrib><creatorcontrib>A. Sedory, Stephen</creatorcontrib><creatorcontrib>Singh, Sarjinder</creatorcontrib><title>Improved Mean Methods of Imputation</title><title>Statistics, optimization & information computing</title><description>Replacing missing values of a variable with the mean of the non-missing values is a simple and natural way to impute values fortunately in the case where data is missing completely at random. Following a short review of this method we consider thus possible improvements, are called the shrinkage method, a second called the weighted interval method, and a third called the known variance method. Estimates of the population mean obtained from each of these methods are compared to the mean method both analytically and by means of numerical examples.</description><subject>Missing data</subject><subject>Shrinkage</subject><issn>2311-004X</issn><issn>2310-5070</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNotkEtLw0AUhQdRsNRuXQe6Trx3HsnMUoqPQsWNgrthnphiMzWTFPz3po_NuQfO4d7LR8g9QoUKmXrIqXXVoW55RSVekRllCKWABq5PHksA_nVLFjlvAQAbIWqgM7Jc7_Z9OgRfvAXTTTJ8J5-LFIspGAcztKm7IzfR_OSwuMw5-Xx--li9lpv3l_XqcVM6RNqUzPoYKTdMQHCNslBT2SgQRgjqgrISPMdaRZQQo3de1eAtt1YYKWsrgM3J8rx3-uh3DHnQ2zT23XRSU2RUAgfVTK3q3HJ9yrkPUe_7dmf6P42gTyz0kYU-stATC_YPk8lREg</recordid><startdate>20181102</startdate><enddate>20181102</enddate><creator>Mohamed, Choukri</creator><creator>A. Sedory, Stephen</creator><creator>Singh, Sarjinder</creator><general>International Academic Press (Hong Kong)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BVBZV</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>M1O</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20181102</creationdate><title>Improved Mean Methods of Imputation</title><author>Mohamed, Choukri ; A. Sedory, Stephen ; Singh, Sarjinder</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1127-3bdff24a350ec79b06287905a552ce9b80d4169f180ffdcd960db4bb5a886b503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Missing data</topic><topic>Shrinkage</topic><toplevel>online_resources</toplevel><creatorcontrib>Mohamed, Choukri</creatorcontrib><creatorcontrib>A. Sedory, Stephen</creatorcontrib><creatorcontrib>Singh, Sarjinder</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East & South Asia Database</collection><collection>ProQuest One Community College</collection><collection>Library & Information Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Library Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Statistics, optimization & information computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohamed, Choukri</au><au>A. Sedory, Stephen</au><au>Singh, Sarjinder</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Mean Methods of Imputation</atitle><jtitle>Statistics, optimization & information computing</jtitle><date>2018-11-02</date><risdate>2018</risdate><volume>6</volume><issue>4</issue><spage>526</spage><pages>526-</pages><issn>2311-004X</issn><eissn>2310-5070</eissn><abstract>Replacing missing values of a variable with the mean of the non-missing values is a simple and natural way to impute values fortunately in the case where data is missing completely at random. Following a short review of this method we consider thus possible improvements, are called the shrinkage method, a second called the weighted interval method, and a third called the known variance method. Estimates of the population mean obtained from each of these methods are compared to the mean method both analytically and by means of numerical examples.</abstract><cop>Hong Kong</cop><pub>International Academic Press (Hong Kong)</pub><doi>10.19139/soic.v6i4.281</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2311-004X |
ispartof | Statistics, optimization & information computing, 2018-11, Vol.6 (4), p.526 |
issn | 2311-004X 2310-5070 |
language | eng |
recordid | cdi_proquest_journals_2132804097 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Missing data Shrinkage |
title | Improved Mean Methods of Imputation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T00%3A05%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Mean%20Methods%20of%20Imputation&rft.jtitle=Statistics,%20optimization%20&%20information%20computing&rft.au=Mohamed,%20Choukri&rft.date=2018-11-02&rft.volume=6&rft.issue=4&rft.spage=526&rft.pages=526-&rft.issn=2311-004X&rft.eissn=2310-5070&rft_id=info:doi/10.19139/soic.v6i4.281&rft_dat=%3Cproquest_cross%3E2132804097%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132804097&rft_id=info:pmid/&rfr_iscdi=true |