Improved Mean Methods of Imputation

Replacing missing values of a variable with the mean of the non-missing values is a simple and natural way to impute values fortunately in the case where data is missing completely at random. Following a short review of this method we consider thus possible improvements, are called the shrinkage met...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics, optimization & information computing optimization & information computing, 2018-11, Vol.6 (4), p.526
Hauptverfasser: Mohamed, Choukri, A. Sedory, Stephen, Singh, Sarjinder
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 526
container_title Statistics, optimization & information computing
container_volume 6
creator Mohamed, Choukri
A. Sedory, Stephen
Singh, Sarjinder
description Replacing missing values of a variable with the mean of the non-missing values is a simple and natural way to impute values fortunately in the case where data is missing completely at random. Following a short review of this method we consider thus possible improvements, are called the shrinkage method, a second called the weighted interval method, and a third called the known variance method. Estimates of the population mean obtained from each of these methods are compared to the mean method both analytically and by means of numerical examples.
doi_str_mv 10.19139/soic.v6i4.281
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2132804097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2132804097</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1127-3bdff24a350ec79b06287905a552ce9b80d4169f180ffdcd960db4bb5a886b503</originalsourceid><addsrcrecordid>eNotkEtLw0AUhQdRsNRuXQe6Trx3HsnMUoqPQsWNgrthnphiMzWTFPz3po_NuQfO4d7LR8g9QoUKmXrIqXXVoW55RSVekRllCKWABq5PHksA_nVLFjlvAQAbIWqgM7Jc7_Z9OgRfvAXTTTJ8J5-LFIspGAcztKm7IzfR_OSwuMw5-Xx--li9lpv3l_XqcVM6RNqUzPoYKTdMQHCNslBT2SgQRgjqgrISPMdaRZQQo3de1eAtt1YYKWsrgM3J8rx3-uh3DHnQ2zT23XRSU2RUAgfVTK3q3HJ9yrkPUe_7dmf6P42gTyz0kYU-stATC_YPk8lREg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132804097</pqid></control><display><type>article</type><title>Improved Mean Methods of Imputation</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Mohamed, Choukri ; A. Sedory, Stephen ; Singh, Sarjinder</creator><creatorcontrib>Mohamed, Choukri ; A. Sedory, Stephen ; Singh, Sarjinder</creatorcontrib><description>Replacing missing values of a variable with the mean of the non-missing values is a simple and natural way to impute values fortunately in the case where data is missing completely at random. Following a short review of this method we consider thus possible improvements, are called the shrinkage method, a second called the weighted interval method, and a third called the known variance method. Estimates of the population mean obtained from each of these methods are compared to the mean method both analytically and by means of numerical examples.</description><identifier>ISSN: 2311-004X</identifier><identifier>EISSN: 2310-5070</identifier><identifier>DOI: 10.19139/soic.v6i4.281</identifier><language>eng</language><publisher>Hong Kong: International Academic Press (Hong Kong)</publisher><subject>Missing data ; Shrinkage</subject><ispartof>Statistics, optimization &amp; information computing, 2018-11, Vol.6 (4), p.526</ispartof><rights>(c) 2018. This work is licensed under CC BY 3.0 Unported - https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1127-3bdff24a350ec79b06287905a552ce9b80d4169f180ffdcd960db4bb5a886b503</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Mohamed, Choukri</creatorcontrib><creatorcontrib>A. Sedory, Stephen</creatorcontrib><creatorcontrib>Singh, Sarjinder</creatorcontrib><title>Improved Mean Methods of Imputation</title><title>Statistics, optimization &amp; information computing</title><description>Replacing missing values of a variable with the mean of the non-missing values is a simple and natural way to impute values fortunately in the case where data is missing completely at random. Following a short review of this method we consider thus possible improvements, are called the shrinkage method, a second called the weighted interval method, and a third called the known variance method. Estimates of the population mean obtained from each of these methods are compared to the mean method both analytically and by means of numerical examples.</description><subject>Missing data</subject><subject>Shrinkage</subject><issn>2311-004X</issn><issn>2310-5070</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNotkEtLw0AUhQdRsNRuXQe6Trx3HsnMUoqPQsWNgrthnphiMzWTFPz3po_NuQfO4d7LR8g9QoUKmXrIqXXVoW55RSVekRllCKWABq5PHksA_nVLFjlvAQAbIWqgM7Jc7_Z9OgRfvAXTTTJ8J5-LFIspGAcztKm7IzfR_OSwuMw5-Xx--li9lpv3l_XqcVM6RNqUzPoYKTdMQHCNslBT2SgQRgjqgrISPMdaRZQQo3de1eAtt1YYKWsrgM3J8rx3-uh3DHnQ2zT23XRSU2RUAgfVTK3q3HJ9yrkPUe_7dmf6P42gTyz0kYU-stATC_YPk8lREg</recordid><startdate>20181102</startdate><enddate>20181102</enddate><creator>Mohamed, Choukri</creator><creator>A. Sedory, Stephen</creator><creator>Singh, Sarjinder</creator><general>International Academic Press (Hong Kong)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BVBZV</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>M1O</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20181102</creationdate><title>Improved Mean Methods of Imputation</title><author>Mohamed, Choukri ; A. Sedory, Stephen ; Singh, Sarjinder</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1127-3bdff24a350ec79b06287905a552ce9b80d4169f180ffdcd960db4bb5a886b503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Missing data</topic><topic>Shrinkage</topic><toplevel>online_resources</toplevel><creatorcontrib>Mohamed, Choukri</creatorcontrib><creatorcontrib>A. Sedory, Stephen</creatorcontrib><creatorcontrib>Singh, Sarjinder</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East &amp; South Asia Database</collection><collection>ProQuest One Community College</collection><collection>Library &amp; Information Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Library Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Statistics, optimization &amp; information computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohamed, Choukri</au><au>A. Sedory, Stephen</au><au>Singh, Sarjinder</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Mean Methods of Imputation</atitle><jtitle>Statistics, optimization &amp; information computing</jtitle><date>2018-11-02</date><risdate>2018</risdate><volume>6</volume><issue>4</issue><spage>526</spage><pages>526-</pages><issn>2311-004X</issn><eissn>2310-5070</eissn><abstract>Replacing missing values of a variable with the mean of the non-missing values is a simple and natural way to impute values fortunately in the case where data is missing completely at random. Following a short review of this method we consider thus possible improvements, are called the shrinkage method, a second called the weighted interval method, and a third called the known variance method. Estimates of the population mean obtained from each of these methods are compared to the mean method both analytically and by means of numerical examples.</abstract><cop>Hong Kong</cop><pub>International Academic Press (Hong Kong)</pub><doi>10.19139/soic.v6i4.281</doi></addata></record>
fulltext fulltext
identifier ISSN: 2311-004X
ispartof Statistics, optimization & information computing, 2018-11, Vol.6 (4), p.526
issn 2311-004X
2310-5070
language eng
recordid cdi_proquest_journals_2132804097
source EZB-FREE-00999 freely available EZB journals
subjects Missing data
Shrinkage
title Improved Mean Methods of Imputation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T00%3A05%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Mean%20Methods%20of%20Imputation&rft.jtitle=Statistics,%20optimization%20&%20information%20computing&rft.au=Mohamed,%20Choukri&rft.date=2018-11-02&rft.volume=6&rft.issue=4&rft.spage=526&rft.pages=526-&rft.issn=2311-004X&rft.eissn=2310-5070&rft_id=info:doi/10.19139/soic.v6i4.281&rft_dat=%3Cproquest_cross%3E2132804097%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132804097&rft_id=info:pmid/&rfr_iscdi=true