Lattice Boltzmann simulation of antiplane shear loading of a stationary crack

In this work, the lattice Boltzmann method is applied to study the dynamic behaviour of linear elastic solids under antiplane shear deformation. In this case, the governing set of partial differential equations reduces to a scalar wave equation for the out of plane displacement in a two dimensional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mechanics 2018-11, Vol.62 (5), p.1059-1069
Hauptverfasser: Schlüter, Alexander, Kuhn, Charlotte, Müller, Ralf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1069
container_issue 5
container_start_page 1059
container_title Computational mechanics
container_volume 62
creator Schlüter, Alexander
Kuhn, Charlotte
Müller, Ralf
description In this work, the lattice Boltzmann method is applied to study the dynamic behaviour of linear elastic solids under antiplane shear deformation. In this case, the governing set of partial differential equations reduces to a scalar wave equation for the out of plane displacement in a two dimensional domain. The lattice Boltzmann approach developed by Guangwu (J Comput Phys 161(1):61–69, 2000 ) in 2006 is used to solve the problem numerically. Some aspects of the scheme are highlighted, including the treatment of the boundary conditions. Subsequently, the performance of the lattice Boltzmann scheme is tested for a stationary crack problem for which an analytic solution exists. The treatment of cracks is new compared to the examples that are discussed in Guangwu’s work. Furthermore, the lattice Boltzmann simulations are compared to finite element computations. Finally, the influence of the lattice Boltzmann relaxation parameter on the stability of the scheme is illustrated.
doi_str_mv 10.1007/s00466-018-1550-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2132802373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2132802373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-5f983108d722ad34b14378567a8275f5c1c75c23eeadec60ec4a553e27326073</originalsourceid><addsrcrecordid>eNp1kLtOAzEQRS0EEiHwAXSWqA3jt1NCxEsKoklvGa83bNjYwXYK-Ho2WSQqqinm3Dujg9AlhWsKoG8KgFCKADWESglEHKEJFZwRmDFxjCZAtSFaaXmKzkpZA1BpuJygl4WrtfMB36W-fm9cjLh0m13vapciTi12sXbb3sWAy3twGffJNV1cHVa41APn8hf22fmPc3TSur6Ei985RcuH--X8iSxeH5_ntwviOVWVyHZmOAXTaMZcw8Xb8Kk2UmlnmJat9NRr6RkPwTXBKwheOCl5YJozBZpP0dVYu83pcxdKteu0y3G4aBnlzADjmg8UHSmfUyk5tHabu83wq6Vg99LsKM0O0uxemhVDho2ZMrBxFfJf8_-hH5dkblg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132802373</pqid></control><display><type>article</type><title>Lattice Boltzmann simulation of antiplane shear loading of a stationary crack</title><source>SpringerLink Journals</source><creator>Schlüter, Alexander ; Kuhn, Charlotte ; Müller, Ralf</creator><creatorcontrib>Schlüter, Alexander ; Kuhn, Charlotte ; Müller, Ralf</creatorcontrib><description>In this work, the lattice Boltzmann method is applied to study the dynamic behaviour of linear elastic solids under antiplane shear deformation. In this case, the governing set of partial differential equations reduces to a scalar wave equation for the out of plane displacement in a two dimensional domain. The lattice Boltzmann approach developed by Guangwu (J Comput Phys 161(1):61–69, 2000 ) in 2006 is used to solve the problem numerically. Some aspects of the scheme are highlighted, including the treatment of the boundary conditions. Subsequently, the performance of the lattice Boltzmann scheme is tested for a stationary crack problem for which an analytic solution exists. The treatment of cracks is new compared to the examples that are discussed in Guangwu’s work. Furthermore, the lattice Boltzmann simulations are compared to finite element computations. Finally, the influence of the lattice Boltzmann relaxation parameter on the stability of the scheme is illustrated.</description><identifier>ISSN: 0178-7675</identifier><identifier>EISSN: 1432-0924</identifier><identifier>DOI: 10.1007/s00466-018-1550-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Antiplane deformation ; Boundary conditions ; Classical and Continuum Physics ; Computational Science and Engineering ; Computer simulation ; Elastic deformation ; Engineering ; Finite element method ; Original Paper ; Partial differential equations ; Shear deformation ; Theoretical and Applied Mechanics ; Wave equations</subject><ispartof>Computational mechanics, 2018-11, Vol.62 (5), p.1059-1069</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-5f983108d722ad34b14378567a8275f5c1c75c23eeadec60ec4a553e27326073</citedby><cites>FETCH-LOGICAL-c316t-5f983108d722ad34b14378567a8275f5c1c75c23eeadec60ec4a553e27326073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00466-018-1550-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00466-018-1550-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Schlüter, Alexander</creatorcontrib><creatorcontrib>Kuhn, Charlotte</creatorcontrib><creatorcontrib>Müller, Ralf</creatorcontrib><title>Lattice Boltzmann simulation of antiplane shear loading of a stationary crack</title><title>Computational mechanics</title><addtitle>Comput Mech</addtitle><description>In this work, the lattice Boltzmann method is applied to study the dynamic behaviour of linear elastic solids under antiplane shear deformation. In this case, the governing set of partial differential equations reduces to a scalar wave equation for the out of plane displacement in a two dimensional domain. The lattice Boltzmann approach developed by Guangwu (J Comput Phys 161(1):61–69, 2000 ) in 2006 is used to solve the problem numerically. Some aspects of the scheme are highlighted, including the treatment of the boundary conditions. Subsequently, the performance of the lattice Boltzmann scheme is tested for a stationary crack problem for which an analytic solution exists. The treatment of cracks is new compared to the examples that are discussed in Guangwu’s work. Furthermore, the lattice Boltzmann simulations are compared to finite element computations. Finally, the influence of the lattice Boltzmann relaxation parameter on the stability of the scheme is illustrated.</description><subject>Antiplane deformation</subject><subject>Boundary conditions</subject><subject>Classical and Continuum Physics</subject><subject>Computational Science and Engineering</subject><subject>Computer simulation</subject><subject>Elastic deformation</subject><subject>Engineering</subject><subject>Finite element method</subject><subject>Original Paper</subject><subject>Partial differential equations</subject><subject>Shear deformation</subject><subject>Theoretical and Applied Mechanics</subject><subject>Wave equations</subject><issn>0178-7675</issn><issn>1432-0924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOAzEQRS0EEiHwAXSWqA3jt1NCxEsKoklvGa83bNjYwXYK-Ho2WSQqqinm3Dujg9AlhWsKoG8KgFCKADWESglEHKEJFZwRmDFxjCZAtSFaaXmKzkpZA1BpuJygl4WrtfMB36W-fm9cjLh0m13vapciTi12sXbb3sWAy3twGffJNV1cHVa41APn8hf22fmPc3TSur6Ei985RcuH--X8iSxeH5_ntwviOVWVyHZmOAXTaMZcw8Xb8Kk2UmlnmJat9NRr6RkPwTXBKwheOCl5YJozBZpP0dVYu83pcxdKteu0y3G4aBnlzADjmg8UHSmfUyk5tHabu83wq6Vg99LsKM0O0uxemhVDho2ZMrBxFfJf8_-hH5dkblg</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Schlüter, Alexander</creator><creator>Kuhn, Charlotte</creator><creator>Müller, Ralf</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181101</creationdate><title>Lattice Boltzmann simulation of antiplane shear loading of a stationary crack</title><author>Schlüter, Alexander ; Kuhn, Charlotte ; Müller, Ralf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-5f983108d722ad34b14378567a8275f5c1c75c23eeadec60ec4a553e27326073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Antiplane deformation</topic><topic>Boundary conditions</topic><topic>Classical and Continuum Physics</topic><topic>Computational Science and Engineering</topic><topic>Computer simulation</topic><topic>Elastic deformation</topic><topic>Engineering</topic><topic>Finite element method</topic><topic>Original Paper</topic><topic>Partial differential equations</topic><topic>Shear deformation</topic><topic>Theoretical and Applied Mechanics</topic><topic>Wave equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schlüter, Alexander</creatorcontrib><creatorcontrib>Kuhn, Charlotte</creatorcontrib><creatorcontrib>Müller, Ralf</creatorcontrib><collection>CrossRef</collection><jtitle>Computational mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schlüter, Alexander</au><au>Kuhn, Charlotte</au><au>Müller, Ralf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lattice Boltzmann simulation of antiplane shear loading of a stationary crack</atitle><jtitle>Computational mechanics</jtitle><stitle>Comput Mech</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>62</volume><issue>5</issue><spage>1059</spage><epage>1069</epage><pages>1059-1069</pages><issn>0178-7675</issn><eissn>1432-0924</eissn><abstract>In this work, the lattice Boltzmann method is applied to study the dynamic behaviour of linear elastic solids under antiplane shear deformation. In this case, the governing set of partial differential equations reduces to a scalar wave equation for the out of plane displacement in a two dimensional domain. The lattice Boltzmann approach developed by Guangwu (J Comput Phys 161(1):61–69, 2000 ) in 2006 is used to solve the problem numerically. Some aspects of the scheme are highlighted, including the treatment of the boundary conditions. Subsequently, the performance of the lattice Boltzmann scheme is tested for a stationary crack problem for which an analytic solution exists. The treatment of cracks is new compared to the examples that are discussed in Guangwu’s work. Furthermore, the lattice Boltzmann simulations are compared to finite element computations. Finally, the influence of the lattice Boltzmann relaxation parameter on the stability of the scheme is illustrated.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00466-018-1550-4</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0178-7675
ispartof Computational mechanics, 2018-11, Vol.62 (5), p.1059-1069
issn 0178-7675
1432-0924
language eng
recordid cdi_proquest_journals_2132802373
source SpringerLink Journals
subjects Antiplane deformation
Boundary conditions
Classical and Continuum Physics
Computational Science and Engineering
Computer simulation
Elastic deformation
Engineering
Finite element method
Original Paper
Partial differential equations
Shear deformation
Theoretical and Applied Mechanics
Wave equations
title Lattice Boltzmann simulation of antiplane shear loading of a stationary crack
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A43%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lattice%20Boltzmann%20simulation%20of%20antiplane%20shear%20loading%20of%20a%20stationary%20crack&rft.jtitle=Computational%20mechanics&rft.au=Schl%C3%BCter,%20Alexander&rft.date=2018-11-01&rft.volume=62&rft.issue=5&rft.spage=1059&rft.epage=1069&rft.pages=1059-1069&rft.issn=0178-7675&rft.eissn=1432-0924&rft_id=info:doi/10.1007/s00466-018-1550-4&rft_dat=%3Cproquest_cross%3E2132802373%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132802373&rft_id=info:pmid/&rfr_iscdi=true