Performance of nitrogen ion-implanted supermartensitic stainless steel in chlorine- and hydrogen-rich environments

Modified supermartensitic stainless steel surfaces were investigated as protective means against deterioration in Cl−- and H+-rich media. Nitrogen plasma immersion ion implantation at the 300–400 °C range produced top nitride-rich layers (with mainly γ′-Fe4N and ε-Fe2-3N, but also with α′N, accordin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface & coatings technology 2018-10, Vol.351, p.29-41
Hauptverfasser: Schibicheski Kurelo, Bruna C.E., de Souza, Gelson B., Serbena, Francisco C., de Oliveira, Willian R., Marino, Cláudia E.B., Taminato, Letícia A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 41
container_issue
container_start_page 29
container_title Surface & coatings technology
container_volume 351
creator Schibicheski Kurelo, Bruna C.E.
de Souza, Gelson B.
Serbena, Francisco C.
de Oliveira, Willian R.
Marino, Cláudia E.B.
Taminato, Letícia A.
description Modified supermartensitic stainless steel surfaces were investigated as protective means against deterioration in Cl−- and H+-rich media. Nitrogen plasma immersion ion implantation at the 300–400 °C range produced top nitride-rich layers (with mainly γ′-Fe4N and ε-Fe2-3N, but also with α′N, according to the treatment temperature) followed by underneath expanded martensite cases. The 400 °C nitrided sample presented the best performance in potentiodynamic polarization tests with NaCl electrolyte, featured by 4.3 times increase in the corrosion potential and the absence of pits, attributed to the thickest and continuous ε-phase containing nitride-rich layer. The hydrogen embrittlement was assessed through cathodic hydrogenation tests. Both reference and 400 °C nitrided surfaces disclosed the phenomenon of intensified plastic flow under normal and tangential loadings. A decrease in hardness, elastic modulus and scratch resistance featured a ductile-to-brittle transition on the nitrided surface, possibly due to improved hydrogen trapping by nitride species with subsequent effects in plasticity. In summary, while the nitride layer played an advantageous role in protecting SMSS from chlorine attack, it was susceptible against the hydrogen corrosion. •N-PIII produced stratified layers with nitrides and expanded martensite on SMSS.•Corrosion resistance in Cl−-containing medium improved in all the nitrided surfaces.•Modified surfaces with ε-Fe2-3N provided 4.3 times increase in corrosion potential.•H-attack caused intensified surface plastic flow and ductile-to-brittle transition.•The layer's susceptibility against hydrogenation compromises the SMSS bulk protection.
doi_str_mv 10.1016/j.surfcoat.2018.07.058
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2132690874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0257897218307503</els_id><sourcerecordid>2132690874</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-6b6040e77bfa65893cc6a650da6f7e15c8a64d26d48685bcc1dab21106eea0093</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKt_QQKuZ7yZR5LZKcUXCLrQdUiTOzZlmtQkFfz3RqtrV_cszjmX8xFyzqBmwPjluk67OJqgc90AkzWIGnp5QGZMiqFq204ckhk0vajkIJpjcpLSGgCYGLoZic8YxxA32hukYaTe5Rje0FMXfOU220n7jJam3RaLKWb0yWVnaMra-QlTKgpxos5Ts5pCdB4rqr2lq0_7U1RFZ1YU_YeLwW_Q53RKjkY9JTz7vXPyenvzsrivHp_uHhbXj5VpO8gVX3LoAIVYjpr3cmiN4UWA1XwUyHojNe9sw20nueyXxjCrlw1jwBE1wNDOycW-dxvD-w5TVuuwi768VA1rGz6AFF1x8b3LxJBSxFFtoytLPxUD9c1XrdUfX_XNV4FQhW8JXu2DWDZ8OIwqGYcFo3URTVY2uP8qvgCkSorK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132690874</pqid></control><display><type>article</type><title>Performance of nitrogen ion-implanted supermartensitic stainless steel in chlorine- and hydrogen-rich environments</title><source>Access via ScienceDirect (Elsevier)</source><creator>Schibicheski Kurelo, Bruna C.E. ; de Souza, Gelson B. ; Serbena, Francisco C. ; de Oliveira, Willian R. ; Marino, Cláudia E.B. ; Taminato, Letícia A.</creator><creatorcontrib>Schibicheski Kurelo, Bruna C.E. ; de Souza, Gelson B. ; Serbena, Francisco C. ; de Oliveira, Willian R. ; Marino, Cláudia E.B. ; Taminato, Letícia A.</creatorcontrib><description>Modified supermartensitic stainless steel surfaces were investigated as protective means against deterioration in Cl−- and H+-rich media. Nitrogen plasma immersion ion implantation at the 300–400 °C range produced top nitride-rich layers (with mainly γ′-Fe4N and ε-Fe2-3N, but also with α′N, according to the treatment temperature) followed by underneath expanded martensite cases. The 400 °C nitrided sample presented the best performance in potentiodynamic polarization tests with NaCl electrolyte, featured by 4.3 times increase in the corrosion potential and the absence of pits, attributed to the thickest and continuous ε-phase containing nitride-rich layer. The hydrogen embrittlement was assessed through cathodic hydrogenation tests. Both reference and 400 °C nitrided surfaces disclosed the phenomenon of intensified plastic flow under normal and tangential loadings. A decrease in hardness, elastic modulus and scratch resistance featured a ductile-to-brittle transition on the nitrided surface, possibly due to improved hydrogen trapping by nitride species with subsequent effects in plasticity. In summary, while the nitride layer played an advantageous role in protecting SMSS from chlorine attack, it was susceptible against the hydrogen corrosion. •N-PIII produced stratified layers with nitrides and expanded martensite on SMSS.•Corrosion resistance in Cl−-containing medium improved in all the nitrided surfaces.•Modified surfaces with ε-Fe2-3N provided 4.3 times increase in corrosion potential.•H-attack caused intensified surface plastic flow and ductile-to-brittle transition.•The layer's susceptibility against hydrogenation compromises the SMSS bulk protection.</description><identifier>ISSN: 0257-8972</identifier><identifier>EISSN: 1879-3347</identifier><identifier>DOI: 10.1016/j.surfcoat.2018.07.058</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Chlorine ; Corrosion potential ; Corrosion resistance ; Ductile-brittle transition ; Fracture mechanics ; Hydrogen ; Hydrogen embrittlement ; Ion implantation ; Iron nitride ; Martensite ; Martensitic stainless steel ; Martensitic stainless steels ; Mechanical properties ; Modulus of elasticity ; Nitrogen ; Nitrogen ions ; Nitrogen plasma ; PIII ; Plastic flow ; Scratch resistance ; SMSS ; Sodium chloride ; Submerging</subject><ispartof>Surface &amp; coatings technology, 2018-10, Vol.351, p.29-41</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Oct 15, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-6b6040e77bfa65893cc6a650da6f7e15c8a64d26d48685bcc1dab21106eea0093</citedby><cites>FETCH-LOGICAL-c340t-6b6040e77bfa65893cc6a650da6f7e15c8a64d26d48685bcc1dab21106eea0093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.surfcoat.2018.07.058$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Schibicheski Kurelo, Bruna C.E.</creatorcontrib><creatorcontrib>de Souza, Gelson B.</creatorcontrib><creatorcontrib>Serbena, Francisco C.</creatorcontrib><creatorcontrib>de Oliveira, Willian R.</creatorcontrib><creatorcontrib>Marino, Cláudia E.B.</creatorcontrib><creatorcontrib>Taminato, Letícia A.</creatorcontrib><title>Performance of nitrogen ion-implanted supermartensitic stainless steel in chlorine- and hydrogen-rich environments</title><title>Surface &amp; coatings technology</title><description>Modified supermartensitic stainless steel surfaces were investigated as protective means against deterioration in Cl−- and H+-rich media. Nitrogen plasma immersion ion implantation at the 300–400 °C range produced top nitride-rich layers (with mainly γ′-Fe4N and ε-Fe2-3N, but also with α′N, according to the treatment temperature) followed by underneath expanded martensite cases. The 400 °C nitrided sample presented the best performance in potentiodynamic polarization tests with NaCl electrolyte, featured by 4.3 times increase in the corrosion potential and the absence of pits, attributed to the thickest and continuous ε-phase containing nitride-rich layer. The hydrogen embrittlement was assessed through cathodic hydrogenation tests. Both reference and 400 °C nitrided surfaces disclosed the phenomenon of intensified plastic flow under normal and tangential loadings. A decrease in hardness, elastic modulus and scratch resistance featured a ductile-to-brittle transition on the nitrided surface, possibly due to improved hydrogen trapping by nitride species with subsequent effects in plasticity. In summary, while the nitride layer played an advantageous role in protecting SMSS from chlorine attack, it was susceptible against the hydrogen corrosion. •N-PIII produced stratified layers with nitrides and expanded martensite on SMSS.•Corrosion resistance in Cl−-containing medium improved in all the nitrided surfaces.•Modified surfaces with ε-Fe2-3N provided 4.3 times increase in corrosion potential.•H-attack caused intensified surface plastic flow and ductile-to-brittle transition.•The layer's susceptibility against hydrogenation compromises the SMSS bulk protection.</description><subject>Chlorine</subject><subject>Corrosion potential</subject><subject>Corrosion resistance</subject><subject>Ductile-brittle transition</subject><subject>Fracture mechanics</subject><subject>Hydrogen</subject><subject>Hydrogen embrittlement</subject><subject>Ion implantation</subject><subject>Iron nitride</subject><subject>Martensite</subject><subject>Martensitic stainless steel</subject><subject>Martensitic stainless steels</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Nitrogen</subject><subject>Nitrogen ions</subject><subject>Nitrogen plasma</subject><subject>PIII</subject><subject>Plastic flow</subject><subject>Scratch resistance</subject><subject>SMSS</subject><subject>Sodium chloride</subject><subject>Submerging</subject><issn>0257-8972</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKt_QQKuZ7yZR5LZKcUXCLrQdUiTOzZlmtQkFfz3RqtrV_cszjmX8xFyzqBmwPjluk67OJqgc90AkzWIGnp5QGZMiqFq204ckhk0vajkIJpjcpLSGgCYGLoZic8YxxA32hukYaTe5Rje0FMXfOU220n7jJam3RaLKWb0yWVnaMra-QlTKgpxos5Ts5pCdB4rqr2lq0_7U1RFZ1YU_YeLwW_Q53RKjkY9JTz7vXPyenvzsrivHp_uHhbXj5VpO8gVX3LoAIVYjpr3cmiN4UWA1XwUyHojNe9sw20nueyXxjCrlw1jwBE1wNDOycW-dxvD-w5TVuuwi768VA1rGz6AFF1x8b3LxJBSxFFtoytLPxUD9c1XrdUfX_XNV4FQhW8JXu2DWDZ8OIwqGYcFo3URTVY2uP8qvgCkSorK</recordid><startdate>20181015</startdate><enddate>20181015</enddate><creator>Schibicheski Kurelo, Bruna C.E.</creator><creator>de Souza, Gelson B.</creator><creator>Serbena, Francisco C.</creator><creator>de Oliveira, Willian R.</creator><creator>Marino, Cláudia E.B.</creator><creator>Taminato, Letícia A.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20181015</creationdate><title>Performance of nitrogen ion-implanted supermartensitic stainless steel in chlorine- and hydrogen-rich environments</title><author>Schibicheski Kurelo, Bruna C.E. ; de Souza, Gelson B. ; Serbena, Francisco C. ; de Oliveira, Willian R. ; Marino, Cláudia E.B. ; Taminato, Letícia A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-6b6040e77bfa65893cc6a650da6f7e15c8a64d26d48685bcc1dab21106eea0093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chlorine</topic><topic>Corrosion potential</topic><topic>Corrosion resistance</topic><topic>Ductile-brittle transition</topic><topic>Fracture mechanics</topic><topic>Hydrogen</topic><topic>Hydrogen embrittlement</topic><topic>Ion implantation</topic><topic>Iron nitride</topic><topic>Martensite</topic><topic>Martensitic stainless steel</topic><topic>Martensitic stainless steels</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Nitrogen</topic><topic>Nitrogen ions</topic><topic>Nitrogen plasma</topic><topic>PIII</topic><topic>Plastic flow</topic><topic>Scratch resistance</topic><topic>SMSS</topic><topic>Sodium chloride</topic><topic>Submerging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schibicheski Kurelo, Bruna C.E.</creatorcontrib><creatorcontrib>de Souza, Gelson B.</creatorcontrib><creatorcontrib>Serbena, Francisco C.</creatorcontrib><creatorcontrib>de Oliveira, Willian R.</creatorcontrib><creatorcontrib>Marino, Cláudia E.B.</creatorcontrib><creatorcontrib>Taminato, Letícia A.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Surface &amp; coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schibicheski Kurelo, Bruna C.E.</au><au>de Souza, Gelson B.</au><au>Serbena, Francisco C.</au><au>de Oliveira, Willian R.</au><au>Marino, Cláudia E.B.</au><au>Taminato, Letícia A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance of nitrogen ion-implanted supermartensitic stainless steel in chlorine- and hydrogen-rich environments</atitle><jtitle>Surface &amp; coatings technology</jtitle><date>2018-10-15</date><risdate>2018</risdate><volume>351</volume><spage>29</spage><epage>41</epage><pages>29-41</pages><issn>0257-8972</issn><eissn>1879-3347</eissn><abstract>Modified supermartensitic stainless steel surfaces were investigated as protective means against deterioration in Cl−- and H+-rich media. Nitrogen plasma immersion ion implantation at the 300–400 °C range produced top nitride-rich layers (with mainly γ′-Fe4N and ε-Fe2-3N, but also with α′N, according to the treatment temperature) followed by underneath expanded martensite cases. The 400 °C nitrided sample presented the best performance in potentiodynamic polarization tests with NaCl electrolyte, featured by 4.3 times increase in the corrosion potential and the absence of pits, attributed to the thickest and continuous ε-phase containing nitride-rich layer. The hydrogen embrittlement was assessed through cathodic hydrogenation tests. Both reference and 400 °C nitrided surfaces disclosed the phenomenon of intensified plastic flow under normal and tangential loadings. A decrease in hardness, elastic modulus and scratch resistance featured a ductile-to-brittle transition on the nitrided surface, possibly due to improved hydrogen trapping by nitride species with subsequent effects in plasticity. In summary, while the nitride layer played an advantageous role in protecting SMSS from chlorine attack, it was susceptible against the hydrogen corrosion. •N-PIII produced stratified layers with nitrides and expanded martensite on SMSS.•Corrosion resistance in Cl−-containing medium improved in all the nitrided surfaces.•Modified surfaces with ε-Fe2-3N provided 4.3 times increase in corrosion potential.•H-attack caused intensified surface plastic flow and ductile-to-brittle transition.•The layer's susceptibility against hydrogenation compromises the SMSS bulk protection.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.surfcoat.2018.07.058</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0257-8972
ispartof Surface & coatings technology, 2018-10, Vol.351, p.29-41
issn 0257-8972
1879-3347
language eng
recordid cdi_proquest_journals_2132690874
source Access via ScienceDirect (Elsevier)
subjects Chlorine
Corrosion potential
Corrosion resistance
Ductile-brittle transition
Fracture mechanics
Hydrogen
Hydrogen embrittlement
Ion implantation
Iron nitride
Martensite
Martensitic stainless steel
Martensitic stainless steels
Mechanical properties
Modulus of elasticity
Nitrogen
Nitrogen ions
Nitrogen plasma
PIII
Plastic flow
Scratch resistance
SMSS
Sodium chloride
Submerging
title Performance of nitrogen ion-implanted supermartensitic stainless steel in chlorine- and hydrogen-rich environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T08%3A57%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20of%20nitrogen%20ion-implanted%20supermartensitic%20stainless%20steel%20in%20chlorine-%20and%20hydrogen-rich%20environments&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=Schibicheski%20Kurelo,%20Bruna%20C.E.&rft.date=2018-10-15&rft.volume=351&rft.spage=29&rft.epage=41&rft.pages=29-41&rft.issn=0257-8972&rft.eissn=1879-3347&rft_id=info:doi/10.1016/j.surfcoat.2018.07.058&rft_dat=%3Cproquest_cross%3E2132690874%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132690874&rft_id=info:pmid/&rft_els_id=S0257897218307503&rfr_iscdi=true