Presentation Attack Detection for Iris Recognition: An Assessment of the State-of-the-Art
Iris recognition is increasingly used in large-scale applications. As a result, presentation attack detection for iris recognition takes on fundamental importance. This survey covers the diverse research literature on this topic. Different categories of presentation attack are described and placed i...
Gespeichert in:
Veröffentlicht in: | ACM computing surveys 2019-09, Vol.51 (4), p.1-35 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 35 |
---|---|
container_issue | 4 |
container_start_page | 1 |
container_title | ACM computing surveys |
container_volume | 51 |
creator | Czajka, Adam Bowyer, Kevin W. |
description | Iris recognition is increasingly used in large-scale applications. As a result, presentation attack detection for iris recognition takes on fundamental importance. This survey covers the diverse research literature on this topic. Different categories of presentation attack are described and placed in an application-relevant framework, and the state of the art in detecting each category of attack is summarized. One conclusion from this is that presentation attack detection for iris recognition is not yet a solved problem. Datasets available for research are described, research directions for the near- and medium-term future are outlined, and a short list of recommended readings is suggested. |
doi_str_mv | 10.1145/3232849 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2132685031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2132685031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c215t-f1c106c20dea9f48155206907945ef0a1fa58c2e9de056fd46c0bb9b297e27203</originalsourceid><addsrcrecordid>eNotkM1Lw0AUxBdRMFbxXwh48BR97-1HssdSvwoFRfQcttu3kqpJ3d0e_O9NbU8Dw4-ZYYS4RLhBVPpWkqRG2SNRoNZ1VUuFx6IAaaACCXAqzlJaAwApNIWgl8iJ--xyN_TlNGfnP8s7zuz_jTDEch67VL6yHz76bmeei5PgvhJfHHQi3h_u32ZP1eL5cT6bLipPqHMV0CMYT7BiZ4NqxjUExkJtleYADoPTjSe2KwZtwkoZD8ulXZKtmWoCORFX-9xNHH62nHK7HraxHytbQkmm0SBxpK73lI9DSpFDu4ndt4u_LUK7O6Q9HCL_AGJSUC4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132685031</pqid></control><display><type>article</type><title>Presentation Attack Detection for Iris Recognition: An Assessment of the State-of-the-Art</title><source>ACM Digital Library</source><creator>Czajka, Adam ; Bowyer, Kevin W.</creator><creatorcontrib>Czajka, Adam ; Bowyer, Kevin W.</creatorcontrib><description>Iris recognition is increasingly used in large-scale applications. As a result, presentation attack detection for iris recognition takes on fundamental importance. This survey covers the diverse research literature on this topic. Different categories of presentation attack are described and placed in an application-relevant framework, and the state of the art in detecting each category of attack is summarized. One conclusion from this is that presentation attack detection for iris recognition is not yet a solved problem. Datasets available for research are described, research directions for the near- and medium-term future are outlined, and a short list of recommended readings is suggested.</description><identifier>ISSN: 0360-0300</identifier><identifier>EISSN: 1557-7341</identifier><identifier>DOI: 10.1145/3232849</identifier><language>eng</language><publisher>Baltimore: Association for Computing Machinery</publisher><subject>Access control ; Biometric recognition systems ; Computer science ; Cybercrime ; Cybersecurity ; Datasets ; Intrusion detection systems ; State of the art</subject><ispartof>ACM computing surveys, 2019-09, Vol.51 (4), p.1-35</ispartof><rights>Copyright Association for Computing Machinery Sep 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c215t-f1c106c20dea9f48155206907945ef0a1fa58c2e9de056fd46c0bb9b297e27203</cites><orcidid>0000-0002-7562-4390 ; 0000-0003-2379-2533</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Czajka, Adam</creatorcontrib><creatorcontrib>Bowyer, Kevin W.</creatorcontrib><title>Presentation Attack Detection for Iris Recognition: An Assessment of the State-of-the-Art</title><title>ACM computing surveys</title><description>Iris recognition is increasingly used in large-scale applications. As a result, presentation attack detection for iris recognition takes on fundamental importance. This survey covers the diverse research literature on this topic. Different categories of presentation attack are described and placed in an application-relevant framework, and the state of the art in detecting each category of attack is summarized. One conclusion from this is that presentation attack detection for iris recognition is not yet a solved problem. Datasets available for research are described, research directions for the near- and medium-term future are outlined, and a short list of recommended readings is suggested.</description><subject>Access control</subject><subject>Biometric recognition systems</subject><subject>Computer science</subject><subject>Cybercrime</subject><subject>Cybersecurity</subject><subject>Datasets</subject><subject>Intrusion detection systems</subject><subject>State of the art</subject><issn>0360-0300</issn><issn>1557-7341</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotkM1Lw0AUxBdRMFbxXwh48BR97-1HssdSvwoFRfQcttu3kqpJ3d0e_O9NbU8Dw4-ZYYS4RLhBVPpWkqRG2SNRoNZ1VUuFx6IAaaACCXAqzlJaAwApNIWgl8iJ--xyN_TlNGfnP8s7zuz_jTDEch67VL6yHz76bmeei5PgvhJfHHQi3h_u32ZP1eL5cT6bLipPqHMV0CMYT7BiZ4NqxjUExkJtleYADoPTjSe2KwZtwkoZD8ulXZKtmWoCORFX-9xNHH62nHK7HraxHytbQkmm0SBxpK73lI9DSpFDu4ndt4u_LUK7O6Q9HCL_AGJSUC4</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Czajka, Adam</creator><creator>Bowyer, Kevin W.</creator><general>Association for Computing Machinery</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7562-4390</orcidid><orcidid>https://orcid.org/0000-0003-2379-2533</orcidid></search><sort><creationdate>20190901</creationdate><title>Presentation Attack Detection for Iris Recognition</title><author>Czajka, Adam ; Bowyer, Kevin W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c215t-f1c106c20dea9f48155206907945ef0a1fa58c2e9de056fd46c0bb9b297e27203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Access control</topic><topic>Biometric recognition systems</topic><topic>Computer science</topic><topic>Cybercrime</topic><topic>Cybersecurity</topic><topic>Datasets</topic><topic>Intrusion detection systems</topic><topic>State of the art</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Czajka, Adam</creatorcontrib><creatorcontrib>Bowyer, Kevin W.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ACM computing surveys</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Czajka, Adam</au><au>Bowyer, Kevin W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Presentation Attack Detection for Iris Recognition: An Assessment of the State-of-the-Art</atitle><jtitle>ACM computing surveys</jtitle><date>2019-09-01</date><risdate>2019</risdate><volume>51</volume><issue>4</issue><spage>1</spage><epage>35</epage><pages>1-35</pages><issn>0360-0300</issn><eissn>1557-7341</eissn><abstract>Iris recognition is increasingly used in large-scale applications. As a result, presentation attack detection for iris recognition takes on fundamental importance. This survey covers the diverse research literature on this topic. Different categories of presentation attack are described and placed in an application-relevant framework, and the state of the art in detecting each category of attack is summarized. One conclusion from this is that presentation attack detection for iris recognition is not yet a solved problem. Datasets available for research are described, research directions for the near- and medium-term future are outlined, and a short list of recommended readings is suggested.</abstract><cop>Baltimore</cop><pub>Association for Computing Machinery</pub><doi>10.1145/3232849</doi><tpages>35</tpages><orcidid>https://orcid.org/0000-0002-7562-4390</orcidid><orcidid>https://orcid.org/0000-0003-2379-2533</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-0300 |
ispartof | ACM computing surveys, 2019-09, Vol.51 (4), p.1-35 |
issn | 0360-0300 1557-7341 |
language | eng |
recordid | cdi_proquest_journals_2132685031 |
source | ACM Digital Library |
subjects | Access control Biometric recognition systems Computer science Cybercrime Cybersecurity Datasets Intrusion detection systems State of the art |
title | Presentation Attack Detection for Iris Recognition: An Assessment of the State-of-the-Art |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A14%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Presentation%20Attack%20Detection%20for%20Iris%20Recognition:%20An%20Assessment%20of%20the%20State-of-the-Art&rft.jtitle=ACM%20computing%20surveys&rft.au=Czajka,%20Adam&rft.date=2019-09-01&rft.volume=51&rft.issue=4&rft.spage=1&rft.epage=35&rft.pages=1-35&rft.issn=0360-0300&rft.eissn=1557-7341&rft_id=info:doi/10.1145/3232849&rft_dat=%3Cproquest_cross%3E2132685031%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132685031&rft_id=info:pmid/&rfr_iscdi=true |