Presentation Attack Detection for Iris Recognition: An Assessment of the State-of-the-Art

Iris recognition is increasingly used in large-scale applications. As a result, presentation attack detection for iris recognition takes on fundamental importance. This survey covers the diverse research literature on this topic. Different categories of presentation attack are described and placed i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM computing surveys 2019-09, Vol.51 (4), p.1-35
Hauptverfasser: Czajka, Adam, Bowyer, Kevin W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 35
container_issue 4
container_start_page 1
container_title ACM computing surveys
container_volume 51
creator Czajka, Adam
Bowyer, Kevin W.
description Iris recognition is increasingly used in large-scale applications. As a result, presentation attack detection for iris recognition takes on fundamental importance. This survey covers the diverse research literature on this topic. Different categories of presentation attack are described and placed in an application-relevant framework, and the state of the art in detecting each category of attack is summarized. One conclusion from this is that presentation attack detection for iris recognition is not yet a solved problem. Datasets available for research are described, research directions for the near- and medium-term future are outlined, and a short list of recommended readings is suggested.
doi_str_mv 10.1145/3232849
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2132685031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2132685031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c215t-f1c106c20dea9f48155206907945ef0a1fa58c2e9de056fd46c0bb9b297e27203</originalsourceid><addsrcrecordid>eNotkM1Lw0AUxBdRMFbxXwh48BR97-1HssdSvwoFRfQcttu3kqpJ3d0e_O9NbU8Dw4-ZYYS4RLhBVPpWkqRG2SNRoNZ1VUuFx6IAaaACCXAqzlJaAwApNIWgl8iJ--xyN_TlNGfnP8s7zuz_jTDEch67VL6yHz76bmeei5PgvhJfHHQi3h_u32ZP1eL5cT6bLipPqHMV0CMYT7BiZ4NqxjUExkJtleYADoPTjSe2KwZtwkoZD8ulXZKtmWoCORFX-9xNHH62nHK7HraxHytbQkmm0SBxpK73lI9DSpFDu4ndt4u_LUK7O6Q9HCL_AGJSUC4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132685031</pqid></control><display><type>article</type><title>Presentation Attack Detection for Iris Recognition: An Assessment of the State-of-the-Art</title><source>ACM Digital Library</source><creator>Czajka, Adam ; Bowyer, Kevin W.</creator><creatorcontrib>Czajka, Adam ; Bowyer, Kevin W.</creatorcontrib><description>Iris recognition is increasingly used in large-scale applications. As a result, presentation attack detection for iris recognition takes on fundamental importance. This survey covers the diverse research literature on this topic. Different categories of presentation attack are described and placed in an application-relevant framework, and the state of the art in detecting each category of attack is summarized. One conclusion from this is that presentation attack detection for iris recognition is not yet a solved problem. Datasets available for research are described, research directions for the near- and medium-term future are outlined, and a short list of recommended readings is suggested.</description><identifier>ISSN: 0360-0300</identifier><identifier>EISSN: 1557-7341</identifier><identifier>DOI: 10.1145/3232849</identifier><language>eng</language><publisher>Baltimore: Association for Computing Machinery</publisher><subject>Access control ; Biometric recognition systems ; Computer science ; Cybercrime ; Cybersecurity ; Datasets ; Intrusion detection systems ; State of the art</subject><ispartof>ACM computing surveys, 2019-09, Vol.51 (4), p.1-35</ispartof><rights>Copyright Association for Computing Machinery Sep 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c215t-f1c106c20dea9f48155206907945ef0a1fa58c2e9de056fd46c0bb9b297e27203</cites><orcidid>0000-0002-7562-4390 ; 0000-0003-2379-2533</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Czajka, Adam</creatorcontrib><creatorcontrib>Bowyer, Kevin W.</creatorcontrib><title>Presentation Attack Detection for Iris Recognition: An Assessment of the State-of-the-Art</title><title>ACM computing surveys</title><description>Iris recognition is increasingly used in large-scale applications. As a result, presentation attack detection for iris recognition takes on fundamental importance. This survey covers the diverse research literature on this topic. Different categories of presentation attack are described and placed in an application-relevant framework, and the state of the art in detecting each category of attack is summarized. One conclusion from this is that presentation attack detection for iris recognition is not yet a solved problem. Datasets available for research are described, research directions for the near- and medium-term future are outlined, and a short list of recommended readings is suggested.</description><subject>Access control</subject><subject>Biometric recognition systems</subject><subject>Computer science</subject><subject>Cybercrime</subject><subject>Cybersecurity</subject><subject>Datasets</subject><subject>Intrusion detection systems</subject><subject>State of the art</subject><issn>0360-0300</issn><issn>1557-7341</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotkM1Lw0AUxBdRMFbxXwh48BR97-1HssdSvwoFRfQcttu3kqpJ3d0e_O9NbU8Dw4-ZYYS4RLhBVPpWkqRG2SNRoNZ1VUuFx6IAaaACCXAqzlJaAwApNIWgl8iJ--xyN_TlNGfnP8s7zuz_jTDEch67VL6yHz76bmeei5PgvhJfHHQi3h_u32ZP1eL5cT6bLipPqHMV0CMYT7BiZ4NqxjUExkJtleYADoPTjSe2KwZtwkoZD8ulXZKtmWoCORFX-9xNHH62nHK7HraxHytbQkmm0SBxpK73lI9DSpFDu4ndt4u_LUK7O6Q9HCL_AGJSUC4</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Czajka, Adam</creator><creator>Bowyer, Kevin W.</creator><general>Association for Computing Machinery</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7562-4390</orcidid><orcidid>https://orcid.org/0000-0003-2379-2533</orcidid></search><sort><creationdate>20190901</creationdate><title>Presentation Attack Detection for Iris Recognition</title><author>Czajka, Adam ; Bowyer, Kevin W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c215t-f1c106c20dea9f48155206907945ef0a1fa58c2e9de056fd46c0bb9b297e27203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Access control</topic><topic>Biometric recognition systems</topic><topic>Computer science</topic><topic>Cybercrime</topic><topic>Cybersecurity</topic><topic>Datasets</topic><topic>Intrusion detection systems</topic><topic>State of the art</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Czajka, Adam</creatorcontrib><creatorcontrib>Bowyer, Kevin W.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ACM computing surveys</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Czajka, Adam</au><au>Bowyer, Kevin W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Presentation Attack Detection for Iris Recognition: An Assessment of the State-of-the-Art</atitle><jtitle>ACM computing surveys</jtitle><date>2019-09-01</date><risdate>2019</risdate><volume>51</volume><issue>4</issue><spage>1</spage><epage>35</epage><pages>1-35</pages><issn>0360-0300</issn><eissn>1557-7341</eissn><abstract>Iris recognition is increasingly used in large-scale applications. As a result, presentation attack detection for iris recognition takes on fundamental importance. This survey covers the diverse research literature on this topic. Different categories of presentation attack are described and placed in an application-relevant framework, and the state of the art in detecting each category of attack is summarized. One conclusion from this is that presentation attack detection for iris recognition is not yet a solved problem. Datasets available for research are described, research directions for the near- and medium-term future are outlined, and a short list of recommended readings is suggested.</abstract><cop>Baltimore</cop><pub>Association for Computing Machinery</pub><doi>10.1145/3232849</doi><tpages>35</tpages><orcidid>https://orcid.org/0000-0002-7562-4390</orcidid><orcidid>https://orcid.org/0000-0003-2379-2533</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0360-0300
ispartof ACM computing surveys, 2019-09, Vol.51 (4), p.1-35
issn 0360-0300
1557-7341
language eng
recordid cdi_proquest_journals_2132685031
source ACM Digital Library
subjects Access control
Biometric recognition systems
Computer science
Cybercrime
Cybersecurity
Datasets
Intrusion detection systems
State of the art
title Presentation Attack Detection for Iris Recognition: An Assessment of the State-of-the-Art
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A14%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Presentation%20Attack%20Detection%20for%20Iris%20Recognition:%20An%20Assessment%20of%20the%20State-of-the-Art&rft.jtitle=ACM%20computing%20surveys&rft.au=Czajka,%20Adam&rft.date=2019-09-01&rft.volume=51&rft.issue=4&rft.spage=1&rft.epage=35&rft.pages=1-35&rft.issn=0360-0300&rft.eissn=1557-7341&rft_id=info:doi/10.1145/3232849&rft_dat=%3Cproquest_cross%3E2132685031%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132685031&rft_id=info:pmid/&rfr_iscdi=true