A Bayesian semiparametric partially PH model for clustered time-to-event data
A standard approach for dealing with unobserved heterogeneity and clustered time-to-event data within the proportional hazards (PH) context has been the introduction of a cluster-specific random effect (frailty), common to subjects within the same cluster. However, the conditional PH assumption coul...
Gespeichert in:
Veröffentlicht in: | Scandinavian journal of statistics 2018-12, Vol.45 (4), p.1016-1035 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1035 |
---|---|
container_issue | 4 |
container_start_page | 1016 |
container_title | Scandinavian journal of statistics |
container_volume | 45 |
creator | Nipoti, Bernardo Jara, Alejandro Guindani, Michele |
description | A standard approach for dealing with unobserved heterogeneity and clustered time-to-event data within the proportional hazards (PH) context has been the introduction of a cluster-specific random effect (frailty), common to subjects within the same cluster. However, the conditional PH assumption could be too strong for some applications. For example, the marginal association of survival functions within a cluster does not depend on the subject-specific covariates. We propose an alternative partially PH modeling approach based on the introduction of cluster-dependent random hazard functions and on the use of mixture models induced by completely random measures. The proposed approach accommodates for different degrees of association within a cluster, which varies as a function of cluster-level and individual covariates. Moreover, a particular specification of the proposed model has the appealing property of preserving marginally the PH structure. We illustrate the performances of the proposed modeling approach on simulated and real data sets. |
doi_str_mv | 10.1111/sjos.12332 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2132630063</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26593443</jstor_id><sourcerecordid>26593443</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3232-fa3a58cf0aa1b9e0cd9f6a370d57706b08cdbf3c6a92fe1070d6e690e1f8063c3</originalsourceid><addsrcrecordid>eNp9kNFLwzAQh4MoOKcvvgsB34TOJNel7eMUdcpkwvQ5ZOkFWtplJpnS_97Oqo_eyx3c97uDj5Bzzia8r-tQuzDhAkAckBFPZZYUqSwOyYgBg0TmRX5MTkKoGeMy5fmIPM_oje4wVHpDA7bVVnvdYvSVof0YK900HX2Z09aV2FDrPDXNLkT0WNJYtZhEl-AHbiItddSn5MjqJuDZTx-Tt_u719t5slg-PN7OFokBASKxGvQ0N5ZpzdcFMlMWVmrIWDnNMibXLDfl2oKRuhAWOesXEmXBkNucSTAwJpfD3a137zsMUdVu5zf9SyU4CAmsx3rqaqCMdyF4tGrrq1b7TnGm9rrUXpf61tXDfIA_qwa7f0i1elqufjMXQ6YO0fm_jJDTAtIU4AtUiHbr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132630063</pqid></control><display><type>article</type><title>A Bayesian semiparametric partially PH model for clustered time-to-event data</title><source>Jstor Complete Legacy</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><source>JSTOR Mathematics & Statistics</source><creator>Nipoti, Bernardo ; Jara, Alejandro ; Guindani, Michele</creator><creatorcontrib>Nipoti, Bernardo ; Jara, Alejandro ; Guindani, Michele</creatorcontrib><description>A standard approach for dealing with unobserved heterogeneity and clustered time-to-event data within the proportional hazards (PH) context has been the introduction of a cluster-specific random effect (frailty), common to subjects within the same cluster. However, the conditional PH assumption could be too strong for some applications. For example, the marginal association of survival functions within a cluster does not depend on the subject-specific covariates. We propose an alternative partially PH modeling approach based on the introduction of cluster-dependent random hazard functions and on the use of mixture models induced by completely random measures. The proposed approach accommodates for different degrees of association within a cluster, which varies as a function of cluster-level and individual covariates. Moreover, a particular specification of the proposed model has the appealing property of preserving marginally the PH structure. We illustrate the performances of the proposed modeling approach on simulated and real data sets.</description><identifier>ISSN: 0303-6898</identifier><identifier>EISSN: 1467-9469</identifier><identifier>DOI: 10.1111/sjos.12332</identifier><language>eng</language><publisher>Oxford: Wiley Publishing</publisher><subject>Bayesian analysis ; Clusters ; completely random measures ; Computer simulation ; frailty model ; hazard rate ; Hazards ; Kendall's τ ; Mathematical models ; Modelling ; ORIGINAL ARTICLE ; partially proportional hazards model ; survival ratio</subject><ispartof>Scandinavian journal of statistics, 2018-12, Vol.45 (4), p.1016-1035</ispartof><rights>2018 Board of the Foundation of the Scandinavian Journal of Statistics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3232-fa3a58cf0aa1b9e0cd9f6a370d57706b08cdbf3c6a92fe1070d6e690e1f8063c3</citedby><cites>FETCH-LOGICAL-c3232-fa3a58cf0aa1b9e0cd9f6a370d57706b08cdbf3c6a92fe1070d6e690e1f8063c3</cites><orcidid>0000-0003-1138-951X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26593443$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26593443$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,1411,27901,27902,45550,45551,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Nipoti, Bernardo</creatorcontrib><creatorcontrib>Jara, Alejandro</creatorcontrib><creatorcontrib>Guindani, Michele</creatorcontrib><title>A Bayesian semiparametric partially PH model for clustered time-to-event data</title><title>Scandinavian journal of statistics</title><description>A standard approach for dealing with unobserved heterogeneity and clustered time-to-event data within the proportional hazards (PH) context has been the introduction of a cluster-specific random effect (frailty), common to subjects within the same cluster. However, the conditional PH assumption could be too strong for some applications. For example, the marginal association of survival functions within a cluster does not depend on the subject-specific covariates. We propose an alternative partially PH modeling approach based on the introduction of cluster-dependent random hazard functions and on the use of mixture models induced by completely random measures. The proposed approach accommodates for different degrees of association within a cluster, which varies as a function of cluster-level and individual covariates. Moreover, a particular specification of the proposed model has the appealing property of preserving marginally the PH structure. We illustrate the performances of the proposed modeling approach on simulated and real data sets.</description><subject>Bayesian analysis</subject><subject>Clusters</subject><subject>completely random measures</subject><subject>Computer simulation</subject><subject>frailty model</subject><subject>hazard rate</subject><subject>Hazards</subject><subject>Kendall's τ</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>ORIGINAL ARTICLE</subject><subject>partially proportional hazards model</subject><subject>survival ratio</subject><issn>0303-6898</issn><issn>1467-9469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kNFLwzAQh4MoOKcvvgsB34TOJNel7eMUdcpkwvQ5ZOkFWtplJpnS_97Oqo_eyx3c97uDj5Bzzia8r-tQuzDhAkAckBFPZZYUqSwOyYgBg0TmRX5MTkKoGeMy5fmIPM_oje4wVHpDA7bVVnvdYvSVof0YK900HX2Z09aV2FDrPDXNLkT0WNJYtZhEl-AHbiItddSn5MjqJuDZTx-Tt_u719t5slg-PN7OFokBASKxGvQ0N5ZpzdcFMlMWVmrIWDnNMibXLDfl2oKRuhAWOesXEmXBkNucSTAwJpfD3a137zsMUdVu5zf9SyU4CAmsx3rqaqCMdyF4tGrrq1b7TnGm9rrUXpf61tXDfIA_qwa7f0i1elqufjMXQ6YO0fm_jJDTAtIU4AtUiHbr</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Nipoti, Bernardo</creator><creator>Jara, Alejandro</creator><creator>Guindani, Michele</creator><general>Wiley Publishing</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1138-951X</orcidid></search><sort><creationdate>20181201</creationdate><title>A Bayesian semiparametric partially PH model for clustered time-to-event data</title><author>Nipoti, Bernardo ; Jara, Alejandro ; Guindani, Michele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3232-fa3a58cf0aa1b9e0cd9f6a370d57706b08cdbf3c6a92fe1070d6e690e1f8063c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bayesian analysis</topic><topic>Clusters</topic><topic>completely random measures</topic><topic>Computer simulation</topic><topic>frailty model</topic><topic>hazard rate</topic><topic>Hazards</topic><topic>Kendall's τ</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>ORIGINAL ARTICLE</topic><topic>partially proportional hazards model</topic><topic>survival ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nipoti, Bernardo</creatorcontrib><creatorcontrib>Jara, Alejandro</creatorcontrib><creatorcontrib>Guindani, Michele</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Scandinavian journal of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nipoti, Bernardo</au><au>Jara, Alejandro</au><au>Guindani, Michele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Bayesian semiparametric partially PH model for clustered time-to-event data</atitle><jtitle>Scandinavian journal of statistics</jtitle><date>2018-12-01</date><risdate>2018</risdate><volume>45</volume><issue>4</issue><spage>1016</spage><epage>1035</epage><pages>1016-1035</pages><issn>0303-6898</issn><eissn>1467-9469</eissn><abstract>A standard approach for dealing with unobserved heterogeneity and clustered time-to-event data within the proportional hazards (PH) context has been the introduction of a cluster-specific random effect (frailty), common to subjects within the same cluster. However, the conditional PH assumption could be too strong for some applications. For example, the marginal association of survival functions within a cluster does not depend on the subject-specific covariates. We propose an alternative partially PH modeling approach based on the introduction of cluster-dependent random hazard functions and on the use of mixture models induced by completely random measures. The proposed approach accommodates for different degrees of association within a cluster, which varies as a function of cluster-level and individual covariates. Moreover, a particular specification of the proposed model has the appealing property of preserving marginally the PH structure. We illustrate the performances of the proposed modeling approach on simulated and real data sets.</abstract><cop>Oxford</cop><pub>Wiley Publishing</pub><doi>10.1111/sjos.12332</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-1138-951X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0303-6898 |
ispartof | Scandinavian journal of statistics, 2018-12, Vol.45 (4), p.1016-1035 |
issn | 0303-6898 1467-9469 |
language | eng |
recordid | cdi_proquest_journals_2132630063 |
source | Jstor Complete Legacy; Wiley Online Library Journals Frontfile Complete; Business Source Complete; JSTOR Mathematics & Statistics |
subjects | Bayesian analysis Clusters completely random measures Computer simulation frailty model hazard rate Hazards Kendall's τ Mathematical models Modelling ORIGINAL ARTICLE partially proportional hazards model survival ratio |
title | A Bayesian semiparametric partially PH model for clustered time-to-event data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A33%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Bayesian%20semiparametric%20partially%20PH%20model%20for%20clustered%20time-to-event%20data&rft.jtitle=Scandinavian%20journal%20of%20statistics&rft.au=Nipoti,%20Bernardo&rft.date=2018-12-01&rft.volume=45&rft.issue=4&rft.spage=1016&rft.epage=1035&rft.pages=1016-1035&rft.issn=0303-6898&rft.eissn=1467-9469&rft_id=info:doi/10.1111/sjos.12332&rft_dat=%3Cjstor_proqu%3E26593443%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132630063&rft_id=info:pmid/&rft_jstor_id=26593443&rfr_iscdi=true |