A structure-transfer-driven temporal subspace clustering for video summarization
With the explosively increasing of mobile phones and other oriented camera devices, more and more video data is captured and stored. This brings out an urgent need for fast browsing and understanding video contents. Automatic generation of video summarization is one of effective techniques to tackle...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2019-09, Vol.78 (17), p.24123-24145 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 24145 |
---|---|
container_issue | 17 |
container_start_page | 24123 |
container_title | Multimedia tools and applications |
container_volume | 78 |
creator | Zhang, Jing Shi, Yue Jing, Peiguang Liu, Jing Su, Yuting |
description | With the explosively increasing of mobile phones and other oriented camera devices, more and more video data is captured and stored. This brings out an urgent need for fast browsing and understanding video contents. Automatic generation of video summarization is one of effective techniques to tackle these problems which extracts succinct summaries to represent the original long videos. It involves two problems: video segmentation and summary generation. Most previous works just focused on addressing the second problem by exploiting a simple strategy like boundary detection to segment videos. However, this type of approach leads to suboptimal result because they not only lack of learning mechanism in video segmentation stage, but also separate the whole task into two independent stages. In this paper, we proposed a novel structure-transfer-driven temporal subspace clustering segmentation (STSC) method for video summarization. We first learn the structure information from source videos and then transfer it to target videos. By the Determinantal Point Process (DPP) algorithm, we select an informative subset of shots to create the final video summary. Experimental results on SumMe and TVSum datasets demonstrate the effection of our proposed method, against state-of-the-art methods. |
doi_str_mv | 10.1007/s11042-018-6841-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2132525390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2132525390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-8709a577d206f960b9a90b798f2bc5e7a39fc52584380c07a22ae4090e9f22d83</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Fz9HJR5vmuCx-wYIe9BzSNJEuu22dpAv6681SwZOnGZj3nXnnIeSawS0DUHeRMZCcAqtpVUtG5QlZsFIJqhRnp7kXNVBVAjsnFzFuAVhVcrkgr6siJpxcmtDThLaPwSNtsTv4vkh-Pw5od0Wcmjha5wu3m2Ly2PUfRRiwOHStH_J0v7fYfdvUDf0lOQt2F_3Vb12S94f7t_UT3bw8Pq9XG-oEqxKtFWhbKtVyqIKuoNFWQ6N0HXjjSq-s0MGVvKxlDu5AWc6tl6DB68B5W4sluZn3jjh8Tj4msx0m7PNJw5ng2So0ZBWbVQ6HGNEHM2KXw34ZBuYIzszgTAZnjuCMzB4-e-J4fNTj3-b_TT-7LnDS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132525390</pqid></control><display><type>article</type><title>A structure-transfer-driven temporal subspace clustering for video summarization</title><source>SpringerNature Journals</source><creator>Zhang, Jing ; Shi, Yue ; Jing, Peiguang ; Liu, Jing ; Su, Yuting</creator><creatorcontrib>Zhang, Jing ; Shi, Yue ; Jing, Peiguang ; Liu, Jing ; Su, Yuting</creatorcontrib><description>With the explosively increasing of mobile phones and other oriented camera devices, more and more video data is captured and stored. This brings out an urgent need for fast browsing and understanding video contents. Automatic generation of video summarization is one of effective techniques to tackle these problems which extracts succinct summaries to represent the original long videos. It involves two problems: video segmentation and summary generation. Most previous works just focused on addressing the second problem by exploiting a simple strategy like boundary detection to segment videos. However, this type of approach leads to suboptimal result because they not only lack of learning mechanism in video segmentation stage, but also separate the whole task into two independent stages. In this paper, we proposed a novel structure-transfer-driven temporal subspace clustering segmentation (STSC) method for video summarization. We first learn the structure information from source videos and then transfer it to target videos. By the Determinantal Point Process (DPP) algorithm, we select an informative subset of shots to create the final video summary. Experimental results on SumMe and TVSum datasets demonstrate the effection of our proposed method, against state-of-the-art methods.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-018-6841-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Browsing ; Cellular telephones ; Clustering ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Datasets ; Educational films ; Methods ; Multimedia ; Multimedia Information Systems ; Segmentation ; Semantics ; Special Purpose and Application-Based Systems ; State of the art ; Subspace methods ; Video data</subject><ispartof>Multimedia tools and applications, 2019-09, Vol.78 (17), p.24123-24145</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Multimedia Tools and Applications is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-8709a577d206f960b9a90b798f2bc5e7a39fc52584380c07a22ae4090e9f22d83</citedby><cites>FETCH-LOGICAL-c316t-8709a577d206f960b9a90b798f2bc5e7a39fc52584380c07a22ae4090e9f22d83</cites><orcidid>0000-0003-2648-7358</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-018-6841-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-018-6841-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Shi, Yue</creatorcontrib><creatorcontrib>Jing, Peiguang</creatorcontrib><creatorcontrib>Liu, Jing</creatorcontrib><creatorcontrib>Su, Yuting</creatorcontrib><title>A structure-transfer-driven temporal subspace clustering for video summarization</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>With the explosively increasing of mobile phones and other oriented camera devices, more and more video data is captured and stored. This brings out an urgent need for fast browsing and understanding video contents. Automatic generation of video summarization is one of effective techniques to tackle these problems which extracts succinct summaries to represent the original long videos. It involves two problems: video segmentation and summary generation. Most previous works just focused on addressing the second problem by exploiting a simple strategy like boundary detection to segment videos. However, this type of approach leads to suboptimal result because they not only lack of learning mechanism in video segmentation stage, but also separate the whole task into two independent stages. In this paper, we proposed a novel structure-transfer-driven temporal subspace clustering segmentation (STSC) method for video summarization. We first learn the structure information from source videos and then transfer it to target videos. By the Determinantal Point Process (DPP) algorithm, we select an informative subset of shots to create the final video summary. Experimental results on SumMe and TVSum datasets demonstrate the effection of our proposed method, against state-of-the-art methods.</description><subject>Algorithms</subject><subject>Browsing</subject><subject>Cellular telephones</subject><subject>Clustering</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Datasets</subject><subject>Educational films</subject><subject>Methods</subject><subject>Multimedia</subject><subject>Multimedia Information Systems</subject><subject>Segmentation</subject><subject>Semantics</subject><subject>Special Purpose and Application-Based Systems</subject><subject>State of the art</subject><subject>Subspace methods</subject><subject>Video data</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG8Fz9HJR5vmuCx-wYIe9BzSNJEuu22dpAv6681SwZOnGZj3nXnnIeSawS0DUHeRMZCcAqtpVUtG5QlZsFIJqhRnp7kXNVBVAjsnFzFuAVhVcrkgr6siJpxcmtDThLaPwSNtsTv4vkh-Pw5od0Wcmjha5wu3m2Ly2PUfRRiwOHStH_J0v7fYfdvUDf0lOQt2F_3Vb12S94f7t_UT3bw8Pq9XG-oEqxKtFWhbKtVyqIKuoNFWQ6N0HXjjSq-s0MGVvKxlDu5AWc6tl6DB68B5W4sluZn3jjh8Tj4msx0m7PNJw5ng2So0ZBWbVQ6HGNEHM2KXw34ZBuYIzszgTAZnjuCMzB4-e-J4fNTj3-b_TT-7LnDS</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Zhang, Jing</creator><creator>Shi, Yue</creator><creator>Jing, Peiguang</creator><creator>Liu, Jing</creator><creator>Su, Yuting</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-2648-7358</orcidid></search><sort><creationdate>20190901</creationdate><title>A structure-transfer-driven temporal subspace clustering for video summarization</title><author>Zhang, Jing ; Shi, Yue ; Jing, Peiguang ; Liu, Jing ; Su, Yuting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-8709a577d206f960b9a90b798f2bc5e7a39fc52584380c07a22ae4090e9f22d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Browsing</topic><topic>Cellular telephones</topic><topic>Clustering</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Datasets</topic><topic>Educational films</topic><topic>Methods</topic><topic>Multimedia</topic><topic>Multimedia Information Systems</topic><topic>Segmentation</topic><topic>Semantics</topic><topic>Special Purpose and Application-Based Systems</topic><topic>State of the art</topic><topic>Subspace methods</topic><topic>Video data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Shi, Yue</creatorcontrib><creatorcontrib>Jing, Peiguang</creatorcontrib><creatorcontrib>Liu, Jing</creatorcontrib><creatorcontrib>Su, Yuting</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jing</au><au>Shi, Yue</au><au>Jing, Peiguang</au><au>Liu, Jing</au><au>Su, Yuting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A structure-transfer-driven temporal subspace clustering for video summarization</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>78</volume><issue>17</issue><spage>24123</spage><epage>24145</epage><pages>24123-24145</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>With the explosively increasing of mobile phones and other oriented camera devices, more and more video data is captured and stored. This brings out an urgent need for fast browsing and understanding video contents. Automatic generation of video summarization is one of effective techniques to tackle these problems which extracts succinct summaries to represent the original long videos. It involves two problems: video segmentation and summary generation. Most previous works just focused on addressing the second problem by exploiting a simple strategy like boundary detection to segment videos. However, this type of approach leads to suboptimal result because they not only lack of learning mechanism in video segmentation stage, but also separate the whole task into two independent stages. In this paper, we proposed a novel structure-transfer-driven temporal subspace clustering segmentation (STSC) method for video summarization. We first learn the structure information from source videos and then transfer it to target videos. By the Determinantal Point Process (DPP) algorithm, we select an informative subset of shots to create the final video summary. Experimental results on SumMe and TVSum datasets demonstrate the effection of our proposed method, against state-of-the-art methods.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-018-6841-4</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-2648-7358</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1380-7501 |
ispartof | Multimedia tools and applications, 2019-09, Vol.78 (17), p.24123-24145 |
issn | 1380-7501 1573-7721 |
language | eng |
recordid | cdi_proquest_journals_2132525390 |
source | SpringerNature Journals |
subjects | Algorithms Browsing Cellular telephones Clustering Computer Communication Networks Computer Science Data Structures and Information Theory Datasets Educational films Methods Multimedia Multimedia Information Systems Segmentation Semantics Special Purpose and Application-Based Systems State of the art Subspace methods Video data |
title | A structure-transfer-driven temporal subspace clustering for video summarization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T11%3A58%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20structure-transfer-driven%20temporal%20subspace%20clustering%20for%20video%20summarization&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Zhang,%20Jing&rft.date=2019-09-01&rft.volume=78&rft.issue=17&rft.spage=24123&rft.epage=24145&rft.pages=24123-24145&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-018-6841-4&rft_dat=%3Cproquest_cross%3E2132525390%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132525390&rft_id=info:pmid/&rfr_iscdi=true |