A structure-transfer-driven temporal subspace clustering for video summarization

With the explosively increasing of mobile phones and other oriented camera devices, more and more video data is captured and stored. This brings out an urgent need for fast browsing and understanding video contents. Automatic generation of video summarization is one of effective techniques to tackle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2019-09, Vol.78 (17), p.24123-24145
Hauptverfasser: Zhang, Jing, Shi, Yue, Jing, Peiguang, Liu, Jing, Su, Yuting
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24145
container_issue 17
container_start_page 24123
container_title Multimedia tools and applications
container_volume 78
creator Zhang, Jing
Shi, Yue
Jing, Peiguang
Liu, Jing
Su, Yuting
description With the explosively increasing of mobile phones and other oriented camera devices, more and more video data is captured and stored. This brings out an urgent need for fast browsing and understanding video contents. Automatic generation of video summarization is one of effective techniques to tackle these problems which extracts succinct summaries to represent the original long videos. It involves two problems: video segmentation and summary generation. Most previous works just focused on addressing the second problem by exploiting a simple strategy like boundary detection to segment videos. However, this type of approach leads to suboptimal result because they not only lack of learning mechanism in video segmentation stage, but also separate the whole task into two independent stages. In this paper, we proposed a novel structure-transfer-driven temporal subspace clustering segmentation (STSC) method for video summarization. We first learn the structure information from source videos and then transfer it to target videos. By the Determinantal Point Process (DPP) algorithm, we select an informative subset of shots to create the final video summary. Experimental results on SumMe and TVSum datasets demonstrate the effection of our proposed method, against state-of-the-art methods.
doi_str_mv 10.1007/s11042-018-6841-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2132525390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2132525390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-8709a577d206f960b9a90b798f2bc5e7a39fc52584380c07a22ae4090e9f22d83</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Fz9HJR5vmuCx-wYIe9BzSNJEuu22dpAv6681SwZOnGZj3nXnnIeSawS0DUHeRMZCcAqtpVUtG5QlZsFIJqhRnp7kXNVBVAjsnFzFuAVhVcrkgr6siJpxcmtDThLaPwSNtsTv4vkh-Pw5od0Wcmjha5wu3m2Ly2PUfRRiwOHStH_J0v7fYfdvUDf0lOQt2F_3Vb12S94f7t_UT3bw8Pq9XG-oEqxKtFWhbKtVyqIKuoNFWQ6N0HXjjSq-s0MGVvKxlDu5AWc6tl6DB68B5W4sluZn3jjh8Tj4msx0m7PNJw5ng2So0ZBWbVQ6HGNEHM2KXw34ZBuYIzszgTAZnjuCMzB4-e-J4fNTj3-b_TT-7LnDS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132525390</pqid></control><display><type>article</type><title>A structure-transfer-driven temporal subspace clustering for video summarization</title><source>SpringerNature Journals</source><creator>Zhang, Jing ; Shi, Yue ; Jing, Peiguang ; Liu, Jing ; Su, Yuting</creator><creatorcontrib>Zhang, Jing ; Shi, Yue ; Jing, Peiguang ; Liu, Jing ; Su, Yuting</creatorcontrib><description>With the explosively increasing of mobile phones and other oriented camera devices, more and more video data is captured and stored. This brings out an urgent need for fast browsing and understanding video contents. Automatic generation of video summarization is one of effective techniques to tackle these problems which extracts succinct summaries to represent the original long videos. It involves two problems: video segmentation and summary generation. Most previous works just focused on addressing the second problem by exploiting a simple strategy like boundary detection to segment videos. However, this type of approach leads to suboptimal result because they not only lack of learning mechanism in video segmentation stage, but also separate the whole task into two independent stages. In this paper, we proposed a novel structure-transfer-driven temporal subspace clustering segmentation (STSC) method for video summarization. We first learn the structure information from source videos and then transfer it to target videos. By the Determinantal Point Process (DPP) algorithm, we select an informative subset of shots to create the final video summary. Experimental results on SumMe and TVSum datasets demonstrate the effection of our proposed method, against state-of-the-art methods.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-018-6841-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Browsing ; Cellular telephones ; Clustering ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Datasets ; Educational films ; Methods ; Multimedia ; Multimedia Information Systems ; Segmentation ; Semantics ; Special Purpose and Application-Based Systems ; State of the art ; Subspace methods ; Video data</subject><ispartof>Multimedia tools and applications, 2019-09, Vol.78 (17), p.24123-24145</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Multimedia Tools and Applications is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-8709a577d206f960b9a90b798f2bc5e7a39fc52584380c07a22ae4090e9f22d83</citedby><cites>FETCH-LOGICAL-c316t-8709a577d206f960b9a90b798f2bc5e7a39fc52584380c07a22ae4090e9f22d83</cites><orcidid>0000-0003-2648-7358</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-018-6841-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-018-6841-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Shi, Yue</creatorcontrib><creatorcontrib>Jing, Peiguang</creatorcontrib><creatorcontrib>Liu, Jing</creatorcontrib><creatorcontrib>Su, Yuting</creatorcontrib><title>A structure-transfer-driven temporal subspace clustering for video summarization</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>With the explosively increasing of mobile phones and other oriented camera devices, more and more video data is captured and stored. This brings out an urgent need for fast browsing and understanding video contents. Automatic generation of video summarization is one of effective techniques to tackle these problems which extracts succinct summaries to represent the original long videos. It involves two problems: video segmentation and summary generation. Most previous works just focused on addressing the second problem by exploiting a simple strategy like boundary detection to segment videos. However, this type of approach leads to suboptimal result because they not only lack of learning mechanism in video segmentation stage, but also separate the whole task into two independent stages. In this paper, we proposed a novel structure-transfer-driven temporal subspace clustering segmentation (STSC) method for video summarization. We first learn the structure information from source videos and then transfer it to target videos. By the Determinantal Point Process (DPP) algorithm, we select an informative subset of shots to create the final video summary. Experimental results on SumMe and TVSum datasets demonstrate the effection of our proposed method, against state-of-the-art methods.</description><subject>Algorithms</subject><subject>Browsing</subject><subject>Cellular telephones</subject><subject>Clustering</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Datasets</subject><subject>Educational films</subject><subject>Methods</subject><subject>Multimedia</subject><subject>Multimedia Information Systems</subject><subject>Segmentation</subject><subject>Semantics</subject><subject>Special Purpose and Application-Based Systems</subject><subject>State of the art</subject><subject>Subspace methods</subject><subject>Video data</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG8Fz9HJR5vmuCx-wYIe9BzSNJEuu22dpAv6681SwZOnGZj3nXnnIeSawS0DUHeRMZCcAqtpVUtG5QlZsFIJqhRnp7kXNVBVAjsnFzFuAVhVcrkgr6siJpxcmtDThLaPwSNtsTv4vkh-Pw5od0Wcmjha5wu3m2Ly2PUfRRiwOHStH_J0v7fYfdvUDf0lOQt2F_3Vb12S94f7t_UT3bw8Pq9XG-oEqxKtFWhbKtVyqIKuoNFWQ6N0HXjjSq-s0MGVvKxlDu5AWc6tl6DB68B5W4sluZn3jjh8Tj4msx0m7PNJw5ng2So0ZBWbVQ6HGNEHM2KXw34ZBuYIzszgTAZnjuCMzB4-e-J4fNTj3-b_TT-7LnDS</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Zhang, Jing</creator><creator>Shi, Yue</creator><creator>Jing, Peiguang</creator><creator>Liu, Jing</creator><creator>Su, Yuting</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-2648-7358</orcidid></search><sort><creationdate>20190901</creationdate><title>A structure-transfer-driven temporal subspace clustering for video summarization</title><author>Zhang, Jing ; Shi, Yue ; Jing, Peiguang ; Liu, Jing ; Su, Yuting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-8709a577d206f960b9a90b798f2bc5e7a39fc52584380c07a22ae4090e9f22d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Browsing</topic><topic>Cellular telephones</topic><topic>Clustering</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Datasets</topic><topic>Educational films</topic><topic>Methods</topic><topic>Multimedia</topic><topic>Multimedia Information Systems</topic><topic>Segmentation</topic><topic>Semantics</topic><topic>Special Purpose and Application-Based Systems</topic><topic>State of the art</topic><topic>Subspace methods</topic><topic>Video data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Shi, Yue</creatorcontrib><creatorcontrib>Jing, Peiguang</creatorcontrib><creatorcontrib>Liu, Jing</creatorcontrib><creatorcontrib>Su, Yuting</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jing</au><au>Shi, Yue</au><au>Jing, Peiguang</au><au>Liu, Jing</au><au>Su, Yuting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A structure-transfer-driven temporal subspace clustering for video summarization</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>78</volume><issue>17</issue><spage>24123</spage><epage>24145</epage><pages>24123-24145</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>With the explosively increasing of mobile phones and other oriented camera devices, more and more video data is captured and stored. This brings out an urgent need for fast browsing and understanding video contents. Automatic generation of video summarization is one of effective techniques to tackle these problems which extracts succinct summaries to represent the original long videos. It involves two problems: video segmentation and summary generation. Most previous works just focused on addressing the second problem by exploiting a simple strategy like boundary detection to segment videos. However, this type of approach leads to suboptimal result because they not only lack of learning mechanism in video segmentation stage, but also separate the whole task into two independent stages. In this paper, we proposed a novel structure-transfer-driven temporal subspace clustering segmentation (STSC) method for video summarization. We first learn the structure information from source videos and then transfer it to target videos. By the Determinantal Point Process (DPP) algorithm, we select an informative subset of shots to create the final video summary. Experimental results on SumMe and TVSum datasets demonstrate the effection of our proposed method, against state-of-the-art methods.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-018-6841-4</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-2648-7358</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1380-7501
ispartof Multimedia tools and applications, 2019-09, Vol.78 (17), p.24123-24145
issn 1380-7501
1573-7721
language eng
recordid cdi_proquest_journals_2132525390
source SpringerNature Journals
subjects Algorithms
Browsing
Cellular telephones
Clustering
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Datasets
Educational films
Methods
Multimedia
Multimedia Information Systems
Segmentation
Semantics
Special Purpose and Application-Based Systems
State of the art
Subspace methods
Video data
title A structure-transfer-driven temporal subspace clustering for video summarization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T11%3A58%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20structure-transfer-driven%20temporal%20subspace%20clustering%20for%20video%20summarization&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Zhang,%20Jing&rft.date=2019-09-01&rft.volume=78&rft.issue=17&rft.spage=24123&rft.epage=24145&rft.pages=24123-24145&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-018-6841-4&rft_dat=%3Cproquest_cross%3E2132525390%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132525390&rft_id=info:pmid/&rfr_iscdi=true