Effect of Silver Electrode Annealing Temperature on Electrical Properties of Sodium Potassium Niobate Based Ceramics
Annealing of the electrodes before poling is an inevitable step in the processing of piezoceramics and, hence, the optimization of annealing temperature is necessary to obtain higher properties. However, for sodium potassium niobate based lead free piezoceramics, the data available is very puzzling,...
Gespeichert in:
Veröffentlicht in: | Journal of electronic materials 2019-02, Vol.48 (2), p.845-852 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 852 |
---|---|
container_issue | 2 |
container_start_page | 845 |
container_title | Journal of electronic materials |
container_volume | 48 |
creator | Wathore, N. N. Rawal, Bhupender Dixit, Prashant Mandave, Snehal Praveenkumar, B. Rajan, K. M. |
description | Annealing of the electrodes before poling is an inevitable step in the processing of piezoceramics and, hence, the optimization of annealing temperature is necessary to obtain higher properties. However, for sodium potassium niobate based lead free piezoceramics, the data available is very puzzling, and the annealing temperature has not been standardized. In this study, the optimum
ceramic
-
electrode interface
has been designed by modulating the electrode annealing temperature to attain the best possible properties. The annealing temperature, ranging from 150°C to 750°C, has been investigated using piezoelectric properties, resistivity, dielectric properties, adhesion strength and interface of electrode-ceramic boundaries as parameters. The measured properties demonstrated significant dependence on the characteristics of the ceramic-electrode interface. For lead free piezoceramic, optimum properties are achieved at the annealing temperature of 450°C which has been attributed to the well- bonded homogeneous ceramic-electrode interface. |
doi_str_mv | 10.1007/s11664-018-6787-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2132525289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2132525289</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-2cc633374b69141c6346f5a86109658616982dece02d8ace74b2067758dc8b693</originalsourceid><addsrcrecordid>eNp1kN9LwzAQx4MoOKd_gG8Bn6u5pk2zxznmDxg6cIJvIUuvo6NtZpIK_vemduCT3MPdcZ_v9-BLyDWwW2CsuPMAQmQJA5mIQhYJPyETyDOegBQfp2TCuIAkT3l-Ti683zMGOUiYkLCsKjSB2oq-1c0XOrps4u5siXTedaibutvRDbYHdDr0DqntjkhtdEPXzsZLqNH_Wtiy7lu6tkF7P0wvtd3qgPReeyzpInq0tfGX5KzSjcerY5-S94flZvGUrF4fnxfzVWI4iJCkxgjOeZFtxQwyiEsmqlxLAWwm8tjETKYlGmRpKbXBCKZMFEUuSyOjhk_Jzeh7cPazRx_U3vauiy9VCjzNY8mBgpEyznrvsFIHV7fafStgaghXjeGqGK4awlU8atJR4yPb7dD9Of8v-gG70HyT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132525289</pqid></control><display><type>article</type><title>Effect of Silver Electrode Annealing Temperature on Electrical Properties of Sodium Potassium Niobate Based Ceramics</title><source>SpringerNature Journals</source><creator>Wathore, N. N. ; Rawal, Bhupender ; Dixit, Prashant ; Mandave, Snehal ; Praveenkumar, B. ; Rajan, K. M.</creator><creatorcontrib>Wathore, N. N. ; Rawal, Bhupender ; Dixit, Prashant ; Mandave, Snehal ; Praveenkumar, B. ; Rajan, K. M.</creatorcontrib><description>Annealing of the electrodes before poling is an inevitable step in the processing of piezoceramics and, hence, the optimization of annealing temperature is necessary to obtain higher properties. However, for sodium potassium niobate based lead free piezoceramics, the data available is very puzzling, and the annealing temperature has not been standardized. In this study, the optimum
ceramic
-
electrode interface
has been designed by modulating the electrode annealing temperature to attain the best possible properties. The annealing temperature, ranging from 150°C to 750°C, has been investigated using piezoelectric properties, resistivity, dielectric properties, adhesion strength and interface of electrode-ceramic boundaries as parameters. The measured properties demonstrated significant dependence on the characteristics of the ceramic-electrode interface. For lead free piezoceramic, optimum properties are achieved at the annealing temperature of 450°C which has been attributed to the well- bonded homogeneous ceramic-electrode interface.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-018-6787-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adhesion tests ; Adhesive strength ; Annealing ; Ceramic bonding ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Deoxidizing ; Dependence ; Dielectric properties ; Dielectric strength ; Electrical properties ; Electrodes ; Electronics and Microelectronics ; Instrumentation ; Lead content ; Lead free ; Materials Science ; Optical and Electronic Materials ; Piezoelectric ceramics ; Piezoelectricity ; Potassium ; Potassium niobates ; Solid State Physics</subject><ispartof>Journal of electronic materials, 2019-02, Vol.48 (2), p.845-852</ispartof><rights>The Minerals, Metals & Materials Society 2018</rights><rights>Journal of Electronic Materials is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-2cc633374b69141c6346f5a86109658616982dece02d8ace74b2067758dc8b693</citedby><cites>FETCH-LOGICAL-c316t-2cc633374b69141c6346f5a86109658616982dece02d8ace74b2067758dc8b693</cites><orcidid>0000-0003-3900-6306</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-018-6787-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-018-6787-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wathore, N. N.</creatorcontrib><creatorcontrib>Rawal, Bhupender</creatorcontrib><creatorcontrib>Dixit, Prashant</creatorcontrib><creatorcontrib>Mandave, Snehal</creatorcontrib><creatorcontrib>Praveenkumar, B.</creatorcontrib><creatorcontrib>Rajan, K. M.</creatorcontrib><title>Effect of Silver Electrode Annealing Temperature on Electrical Properties of Sodium Potassium Niobate Based Ceramics</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>Annealing of the electrodes before poling is an inevitable step in the processing of piezoceramics and, hence, the optimization of annealing temperature is necessary to obtain higher properties. However, for sodium potassium niobate based lead free piezoceramics, the data available is very puzzling, and the annealing temperature has not been standardized. In this study, the optimum
ceramic
-
electrode interface
has been designed by modulating the electrode annealing temperature to attain the best possible properties. The annealing temperature, ranging from 150°C to 750°C, has been investigated using piezoelectric properties, resistivity, dielectric properties, adhesion strength and interface of electrode-ceramic boundaries as parameters. The measured properties demonstrated significant dependence on the characteristics of the ceramic-electrode interface. For lead free piezoceramic, optimum properties are achieved at the annealing temperature of 450°C which has been attributed to the well- bonded homogeneous ceramic-electrode interface.</description><subject>Adhesion tests</subject><subject>Adhesive strength</subject><subject>Annealing</subject><subject>Ceramic bonding</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Deoxidizing</subject><subject>Dependence</subject><subject>Dielectric properties</subject><subject>Dielectric strength</subject><subject>Electrical properties</subject><subject>Electrodes</subject><subject>Electronics and Microelectronics</subject><subject>Instrumentation</subject><subject>Lead content</subject><subject>Lead free</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Piezoelectric ceramics</subject><subject>Piezoelectricity</subject><subject>Potassium</subject><subject>Potassium niobates</subject><subject>Solid State Physics</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kN9LwzAQx4MoOKd_gG8Bn6u5pk2zxznmDxg6cIJvIUuvo6NtZpIK_vemduCT3MPdcZ_v9-BLyDWwW2CsuPMAQmQJA5mIQhYJPyETyDOegBQfp2TCuIAkT3l-Ti683zMGOUiYkLCsKjSB2oq-1c0XOrps4u5siXTedaibutvRDbYHdDr0DqntjkhtdEPXzsZLqNH_Wtiy7lu6tkF7P0wvtd3qgPReeyzpInq0tfGX5KzSjcerY5-S94flZvGUrF4fnxfzVWI4iJCkxgjOeZFtxQwyiEsmqlxLAWwm8tjETKYlGmRpKbXBCKZMFEUuSyOjhk_Jzeh7cPazRx_U3vauiy9VCjzNY8mBgpEyznrvsFIHV7fafStgaghXjeGqGK4awlU8atJR4yPb7dD9Of8v-gG70HyT</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Wathore, N. N.</creator><creator>Rawal, Bhupender</creator><creator>Dixit, Prashant</creator><creator>Mandave, Snehal</creator><creator>Praveenkumar, B.</creator><creator>Rajan, K. M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0003-3900-6306</orcidid></search><sort><creationdate>20190201</creationdate><title>Effect of Silver Electrode Annealing Temperature on Electrical Properties of Sodium Potassium Niobate Based Ceramics</title><author>Wathore, N. N. ; Rawal, Bhupender ; Dixit, Prashant ; Mandave, Snehal ; Praveenkumar, B. ; Rajan, K. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-2cc633374b69141c6346f5a86109658616982dece02d8ace74b2067758dc8b693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adhesion tests</topic><topic>Adhesive strength</topic><topic>Annealing</topic><topic>Ceramic bonding</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Deoxidizing</topic><topic>Dependence</topic><topic>Dielectric properties</topic><topic>Dielectric strength</topic><topic>Electrical properties</topic><topic>Electrodes</topic><topic>Electronics and Microelectronics</topic><topic>Instrumentation</topic><topic>Lead content</topic><topic>Lead free</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Piezoelectric ceramics</topic><topic>Piezoelectricity</topic><topic>Potassium</topic><topic>Potassium niobates</topic><topic>Solid State Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wathore, N. N.</creatorcontrib><creatorcontrib>Rawal, Bhupender</creatorcontrib><creatorcontrib>Dixit, Prashant</creatorcontrib><creatorcontrib>Mandave, Snehal</creatorcontrib><creatorcontrib>Praveenkumar, B.</creatorcontrib><creatorcontrib>Rajan, K. M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wathore, N. N.</au><au>Rawal, Bhupender</au><au>Dixit, Prashant</au><au>Mandave, Snehal</au><au>Praveenkumar, B.</au><au>Rajan, K. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Silver Electrode Annealing Temperature on Electrical Properties of Sodium Potassium Niobate Based Ceramics</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2019-02-01</date><risdate>2019</risdate><volume>48</volume><issue>2</issue><spage>845</spage><epage>852</epage><pages>845-852</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>Annealing of the electrodes before poling is an inevitable step in the processing of piezoceramics and, hence, the optimization of annealing temperature is necessary to obtain higher properties. However, for sodium potassium niobate based lead free piezoceramics, the data available is very puzzling, and the annealing temperature has not been standardized. In this study, the optimum
ceramic
-
electrode interface
has been designed by modulating the electrode annealing temperature to attain the best possible properties. The annealing temperature, ranging from 150°C to 750°C, has been investigated using piezoelectric properties, resistivity, dielectric properties, adhesion strength and interface of electrode-ceramic boundaries as parameters. The measured properties demonstrated significant dependence on the characteristics of the ceramic-electrode interface. For lead free piezoceramic, optimum properties are achieved at the annealing temperature of 450°C which has been attributed to the well- bonded homogeneous ceramic-electrode interface.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-018-6787-3</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3900-6306</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2019-02, Vol.48 (2), p.845-852 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_journals_2132525289 |
source | SpringerNature Journals |
subjects | Adhesion tests Adhesive strength Annealing Ceramic bonding Characterization and Evaluation of Materials Chemistry and Materials Science Deoxidizing Dependence Dielectric properties Dielectric strength Electrical properties Electrodes Electronics and Microelectronics Instrumentation Lead content Lead free Materials Science Optical and Electronic Materials Piezoelectric ceramics Piezoelectricity Potassium Potassium niobates Solid State Physics |
title | Effect of Silver Electrode Annealing Temperature on Electrical Properties of Sodium Potassium Niobate Based Ceramics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A06%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Silver%20Electrode%20Annealing%20Temperature%20on%20Electrical%20Properties%20of%20Sodium%20Potassium%20Niobate%20Based%20Ceramics&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Wathore,%20N.%20N.&rft.date=2019-02-01&rft.volume=48&rft.issue=2&rft.spage=845&rft.epage=852&rft.pages=845-852&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-018-6787-3&rft_dat=%3Cproquest_cross%3E2132525289%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132525289&rft_id=info:pmid/&rfr_iscdi=true |