Semiconducting single-walled carbon nanotube network-based double-gate thin-film transistors for high-performance aqueous chemical sensor applications
In this study, we fabricated a highly sensitive separative extended gate chemically modified field effect transistor (SEG-ChemFET) sensor using a semiconducting single-walled carbon nanotube (scSWCNT) network. To improve the stability and sensitivity of the scSWNT channel layer, we fabricated a doub...
Gespeichert in:
Veröffentlicht in: | AIP advances 2018-11, Vol.8 (11), p.115312-115312-5 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 115312-5 |
---|---|
container_issue | 11 |
container_start_page | 115312 |
container_title | AIP advances |
container_volume | 8 |
creator | Hong, Eun-Ki Cho, Won-Ju |
description | In this study, we fabricated a highly sensitive separative extended gate chemically modified field effect transistor (SEG-ChemFET) sensor using a semiconducting single-walled carbon nanotube (scSWCNT) network. To improve the stability and sensitivity of the scSWNT channel layer, we fabricated a double-gate structure FET transducer with a passivated channel using top- and bottom-gate insulators and applied a separate sensing membrane. The scSWCNT network channel was formed by solution process. In order to increase the sensitivity, a low-k spin-on-glass (SOG) film and a stacked Ta2O5/SiO2 film were formed as top-gate and engineered bottom-gate insulators, respectively, which improved the coupling ratio. As a result, the fabricated scSWCNT ChemFET sensor exhibited sensitivity of 365.65 mV/pH sensitivity, which is much higher than the Nernst limit (59.5 mV/pH), a linearity of 99.88%, and a drift rate of 72.44 mV/h. Thus, we expect this research to have important applications for high-sensitivity biosensors. |
doi_str_mv | 10.1063/1.5059376 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2132496908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_03347dd157a140f696ce45d024c4e240</doaj_id><sourcerecordid>2132496908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-1701f8e7e7f3457039f9a1670c2242ec26bf2186367c613f96d74a49ff9ddf023</originalsourceid><addsrcrecordid>eNqdkUtPFTEUxydGEwmy8Bs0caXJYF_TTpeGIJKQsFDXzZk-7u11bju2HQhfhM9r4RJhzVn0nLa__M-r6z4SfEqwYF_J6YAHxaR40x1RMow9o1S8fRG_705K2eFmXBE88qPu_qfbB5OiXU0NcYNKO2bX38I8O4sM5ClFFCGmuk4ORVdvU_7TT1Dar03r1NgNVIfqNsTeh3mPaoZYQqkpF-RTRtuw2faLyy3eQzQOwd_VpbUgs31IDTMqLpYGwrLM7V5DiuVD987DXNzJkz_ufn8__3X2o7-6vrg8-3bVG07H2hOJiR-ddNIzPkjMlFdAhMSGUk6doWLylIyCCWkEYV4JKzlw5b2y1mPKjrvLg65NsNNLDnvIdzpB0I8PKW805BrM7DRmjEtrySCBcOyFEsbxwWLKDXeU46b16aC15NRaLFXv0ppjK19TwihXQuGxUZ8PlMmplOz8_6wE64ctaqKfttjYLwe2mFAfB_M6-CblZ1Av1rN_q9etCg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132496908</pqid></control><display><type>article</type><title>Semiconducting single-walled carbon nanotube network-based double-gate thin-film transistors for high-performance aqueous chemical sensor applications</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Hong, Eun-Ki ; Cho, Won-Ju</creator><creatorcontrib>Hong, Eun-Ki ; Cho, Won-Ju</creatorcontrib><description>In this study, we fabricated a highly sensitive separative extended gate chemically modified field effect transistor (SEG-ChemFET) sensor using a semiconducting single-walled carbon nanotube (scSWCNT) network. To improve the stability and sensitivity of the scSWNT channel layer, we fabricated a double-gate structure FET transducer with a passivated channel using top- and bottom-gate insulators and applied a separate sensing membrane. The scSWCNT network channel was formed by solution process. In order to increase the sensitivity, a low-k spin-on-glass (SOG) film and a stacked Ta2O5/SiO2 film were formed as top-gate and engineered bottom-gate insulators, respectively, which improved the coupling ratio. As a result, the fabricated scSWCNT ChemFET sensor exhibited sensitivity of 365.65 mV/pH sensitivity, which is much higher than the Nernst limit (59.5 mV/pH), a linearity of 99.88%, and a drift rate of 72.44 mV/h. Thus, we expect this research to have important applications for high-sensitivity biosensors.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/1.5059376</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Biosensors ; Chemical sensors ; Drift rate ; Field effect transistors ; Insulators ; Linearity ; Organic chemistry ; Semiconductor devices ; Sensitivity ; Sensors ; Silicon dioxide ; Single wall carbon nanotubes ; Tantalum ; Tantalum oxides ; Thin film transistors</subject><ispartof>AIP advances, 2018-11, Vol.8 (11), p.115312-115312-5</ispartof><rights>Author(s)</rights><rights>2018 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-1701f8e7e7f3457039f9a1670c2242ec26bf2186367c613f96d74a49ff9ddf023</citedby><cites>FETCH-LOGICAL-c428t-1701f8e7e7f3457039f9a1670c2242ec26bf2186367c613f96d74a49ff9ddf023</cites><orcidid>0000-0002-7198-4129</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,27924,27925</link.rule.ids></links><search><creatorcontrib>Hong, Eun-Ki</creatorcontrib><creatorcontrib>Cho, Won-Ju</creatorcontrib><title>Semiconducting single-walled carbon nanotube network-based double-gate thin-film transistors for high-performance aqueous chemical sensor applications</title><title>AIP advances</title><description>In this study, we fabricated a highly sensitive separative extended gate chemically modified field effect transistor (SEG-ChemFET) sensor using a semiconducting single-walled carbon nanotube (scSWCNT) network. To improve the stability and sensitivity of the scSWNT channel layer, we fabricated a double-gate structure FET transducer with a passivated channel using top- and bottom-gate insulators and applied a separate sensing membrane. The scSWCNT network channel was formed by solution process. In order to increase the sensitivity, a low-k spin-on-glass (SOG) film and a stacked Ta2O5/SiO2 film were formed as top-gate and engineered bottom-gate insulators, respectively, which improved the coupling ratio. As a result, the fabricated scSWCNT ChemFET sensor exhibited sensitivity of 365.65 mV/pH sensitivity, which is much higher than the Nernst limit (59.5 mV/pH), a linearity of 99.88%, and a drift rate of 72.44 mV/h. Thus, we expect this research to have important applications for high-sensitivity biosensors.</description><subject>Biosensors</subject><subject>Chemical sensors</subject><subject>Drift rate</subject><subject>Field effect transistors</subject><subject>Insulators</subject><subject>Linearity</subject><subject>Organic chemistry</subject><subject>Semiconductor devices</subject><subject>Sensitivity</subject><subject>Sensors</subject><subject>Silicon dioxide</subject><subject>Single wall carbon nanotubes</subject><subject>Tantalum</subject><subject>Tantalum oxides</subject><subject>Thin film transistors</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqdkUtPFTEUxydGEwmy8Bs0caXJYF_TTpeGIJKQsFDXzZk-7u11bju2HQhfhM9r4RJhzVn0nLa__M-r6z4SfEqwYF_J6YAHxaR40x1RMow9o1S8fRG_705K2eFmXBE88qPu_qfbB5OiXU0NcYNKO2bX38I8O4sM5ClFFCGmuk4ORVdvU_7TT1Dar03r1NgNVIfqNsTeh3mPaoZYQqkpF-RTRtuw2faLyy3eQzQOwd_VpbUgs31IDTMqLpYGwrLM7V5DiuVD987DXNzJkz_ufn8__3X2o7-6vrg8-3bVG07H2hOJiR-ddNIzPkjMlFdAhMSGUk6doWLylIyCCWkEYV4JKzlw5b2y1mPKjrvLg65NsNNLDnvIdzpB0I8PKW805BrM7DRmjEtrySCBcOyFEsbxwWLKDXeU46b16aC15NRaLFXv0ppjK19TwihXQuGxUZ8PlMmplOz8_6wE64ctaqKfttjYLwe2mFAfB_M6-CblZ1Av1rN_q9etCg</recordid><startdate>201811</startdate><enddate>201811</enddate><creator>Hong, Eun-Ki</creator><creator>Cho, Won-Ju</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7198-4129</orcidid></search><sort><creationdate>201811</creationdate><title>Semiconducting single-walled carbon nanotube network-based double-gate thin-film transistors for high-performance aqueous chemical sensor applications</title><author>Hong, Eun-Ki ; Cho, Won-Ju</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-1701f8e7e7f3457039f9a1670c2242ec26bf2186367c613f96d74a49ff9ddf023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biosensors</topic><topic>Chemical sensors</topic><topic>Drift rate</topic><topic>Field effect transistors</topic><topic>Insulators</topic><topic>Linearity</topic><topic>Organic chemistry</topic><topic>Semiconductor devices</topic><topic>Sensitivity</topic><topic>Sensors</topic><topic>Silicon dioxide</topic><topic>Single wall carbon nanotubes</topic><topic>Tantalum</topic><topic>Tantalum oxides</topic><topic>Thin film transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hong, Eun-Ki</creatorcontrib><creatorcontrib>Cho, Won-Ju</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hong, Eun-Ki</au><au>Cho, Won-Ju</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semiconducting single-walled carbon nanotube network-based double-gate thin-film transistors for high-performance aqueous chemical sensor applications</atitle><jtitle>AIP advances</jtitle><date>2018-11</date><risdate>2018</risdate><volume>8</volume><issue>11</issue><spage>115312</spage><epage>115312-5</epage><pages>115312-115312-5</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>In this study, we fabricated a highly sensitive separative extended gate chemically modified field effect transistor (SEG-ChemFET) sensor using a semiconducting single-walled carbon nanotube (scSWCNT) network. To improve the stability and sensitivity of the scSWNT channel layer, we fabricated a double-gate structure FET transducer with a passivated channel using top- and bottom-gate insulators and applied a separate sensing membrane. The scSWCNT network channel was formed by solution process. In order to increase the sensitivity, a low-k spin-on-glass (SOG) film and a stacked Ta2O5/SiO2 film were formed as top-gate and engineered bottom-gate insulators, respectively, which improved the coupling ratio. As a result, the fabricated scSWCNT ChemFET sensor exhibited sensitivity of 365.65 mV/pH sensitivity, which is much higher than the Nernst limit (59.5 mV/pH), a linearity of 99.88%, and a drift rate of 72.44 mV/h. Thus, we expect this research to have important applications for high-sensitivity biosensors.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5059376</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-7198-4129</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2158-3226 |
ispartof | AIP advances, 2018-11, Vol.8 (11), p.115312-115312-5 |
issn | 2158-3226 2158-3226 |
language | eng |
recordid | cdi_proquest_journals_2132496908 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Biosensors Chemical sensors Drift rate Field effect transistors Insulators Linearity Organic chemistry Semiconductor devices Sensitivity Sensors Silicon dioxide Single wall carbon nanotubes Tantalum Tantalum oxides Thin film transistors |
title | Semiconducting single-walled carbon nanotube network-based double-gate thin-film transistors for high-performance aqueous chemical sensor applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T08%3A56%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semiconducting%20single-walled%20carbon%20nanotube%20network-based%20double-gate%20thin-film%20transistors%20for%20high-performance%20aqueous%20chemical%20sensor%20applications&rft.jtitle=AIP%20advances&rft.au=Hong,%20Eun-Ki&rft.date=2018-11&rft.volume=8&rft.issue=11&rft.spage=115312&rft.epage=115312-5&rft.pages=115312-115312-5&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/1.5059376&rft_dat=%3Cproquest_cross%3E2132496908%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132496908&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_03347dd157a140f696ce45d024c4e240&rfr_iscdi=true |