Semiconducting single-walled carbon nanotube network-based double-gate thin-film transistors for high-performance aqueous chemical sensor applications

In this study, we fabricated a highly sensitive separative extended gate chemically modified field effect transistor (SEG-ChemFET) sensor using a semiconducting single-walled carbon nanotube (scSWCNT) network. To improve the stability and sensitivity of the scSWNT channel layer, we fabricated a doub...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2018-11, Vol.8 (11), p.115312-115312-5
Hauptverfasser: Hong, Eun-Ki, Cho, Won-Ju
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 115312-5
container_issue 11
container_start_page 115312
container_title AIP advances
container_volume 8
creator Hong, Eun-Ki
Cho, Won-Ju
description In this study, we fabricated a highly sensitive separative extended gate chemically modified field effect transistor (SEG-ChemFET) sensor using a semiconducting single-walled carbon nanotube (scSWCNT) network. To improve the stability and sensitivity of the scSWNT channel layer, we fabricated a double-gate structure FET transducer with a passivated channel using top- and bottom-gate insulators and applied a separate sensing membrane. The scSWCNT network channel was formed by solution process. In order to increase the sensitivity, a low-k spin-on-glass (SOG) film and a stacked Ta2O5/SiO2 film were formed as top-gate and engineered bottom-gate insulators, respectively, which improved the coupling ratio. As a result, the fabricated scSWCNT ChemFET sensor exhibited sensitivity of 365.65 mV/pH sensitivity, which is much higher than the Nernst limit (59.5 mV/pH), a linearity of 99.88%, and a drift rate of 72.44 mV/h. Thus, we expect this research to have important applications for high-sensitivity biosensors.
doi_str_mv 10.1063/1.5059376
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2132496908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_03347dd157a140f696ce45d024c4e240</doaj_id><sourcerecordid>2132496908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-1701f8e7e7f3457039f9a1670c2242ec26bf2186367c613f96d74a49ff9ddf023</originalsourceid><addsrcrecordid>eNqdkUtPFTEUxydGEwmy8Bs0caXJYF_TTpeGIJKQsFDXzZk-7u11bju2HQhfhM9r4RJhzVn0nLa__M-r6z4SfEqwYF_J6YAHxaR40x1RMow9o1S8fRG_705K2eFmXBE88qPu_qfbB5OiXU0NcYNKO2bX38I8O4sM5ClFFCGmuk4ORVdvU_7TT1Dar03r1NgNVIfqNsTeh3mPaoZYQqkpF-RTRtuw2faLyy3eQzQOwd_VpbUgs31IDTMqLpYGwrLM7V5DiuVD987DXNzJkz_ufn8__3X2o7-6vrg8-3bVG07H2hOJiR-ddNIzPkjMlFdAhMSGUk6doWLylIyCCWkEYV4JKzlw5b2y1mPKjrvLg65NsNNLDnvIdzpB0I8PKW805BrM7DRmjEtrySCBcOyFEsbxwWLKDXeU46b16aC15NRaLFXv0ppjK19TwihXQuGxUZ8PlMmplOz8_6wE64ctaqKfttjYLwe2mFAfB_M6-CblZ1Av1rN_q9etCg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132496908</pqid></control><display><type>article</type><title>Semiconducting single-walled carbon nanotube network-based double-gate thin-film transistors for high-performance aqueous chemical sensor applications</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Hong, Eun-Ki ; Cho, Won-Ju</creator><creatorcontrib>Hong, Eun-Ki ; Cho, Won-Ju</creatorcontrib><description>In this study, we fabricated a highly sensitive separative extended gate chemically modified field effect transistor (SEG-ChemFET) sensor using a semiconducting single-walled carbon nanotube (scSWCNT) network. To improve the stability and sensitivity of the scSWNT channel layer, we fabricated a double-gate structure FET transducer with a passivated channel using top- and bottom-gate insulators and applied a separate sensing membrane. The scSWCNT network channel was formed by solution process. In order to increase the sensitivity, a low-k spin-on-glass (SOG) film and a stacked Ta2O5/SiO2 film were formed as top-gate and engineered bottom-gate insulators, respectively, which improved the coupling ratio. As a result, the fabricated scSWCNT ChemFET sensor exhibited sensitivity of 365.65 mV/pH sensitivity, which is much higher than the Nernst limit (59.5 mV/pH), a linearity of 99.88%, and a drift rate of 72.44 mV/h. Thus, we expect this research to have important applications for high-sensitivity biosensors.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/1.5059376</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Biosensors ; Chemical sensors ; Drift rate ; Field effect transistors ; Insulators ; Linearity ; Organic chemistry ; Semiconductor devices ; Sensitivity ; Sensors ; Silicon dioxide ; Single wall carbon nanotubes ; Tantalum ; Tantalum oxides ; Thin film transistors</subject><ispartof>AIP advances, 2018-11, Vol.8 (11), p.115312-115312-5</ispartof><rights>Author(s)</rights><rights>2018 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-1701f8e7e7f3457039f9a1670c2242ec26bf2186367c613f96d74a49ff9ddf023</citedby><cites>FETCH-LOGICAL-c428t-1701f8e7e7f3457039f9a1670c2242ec26bf2186367c613f96d74a49ff9ddf023</cites><orcidid>0000-0002-7198-4129</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,27924,27925</link.rule.ids></links><search><creatorcontrib>Hong, Eun-Ki</creatorcontrib><creatorcontrib>Cho, Won-Ju</creatorcontrib><title>Semiconducting single-walled carbon nanotube network-based double-gate thin-film transistors for high-performance aqueous chemical sensor applications</title><title>AIP advances</title><description>In this study, we fabricated a highly sensitive separative extended gate chemically modified field effect transistor (SEG-ChemFET) sensor using a semiconducting single-walled carbon nanotube (scSWCNT) network. To improve the stability and sensitivity of the scSWNT channel layer, we fabricated a double-gate structure FET transducer with a passivated channel using top- and bottom-gate insulators and applied a separate sensing membrane. The scSWCNT network channel was formed by solution process. In order to increase the sensitivity, a low-k spin-on-glass (SOG) film and a stacked Ta2O5/SiO2 film were formed as top-gate and engineered bottom-gate insulators, respectively, which improved the coupling ratio. As a result, the fabricated scSWCNT ChemFET sensor exhibited sensitivity of 365.65 mV/pH sensitivity, which is much higher than the Nernst limit (59.5 mV/pH), a linearity of 99.88%, and a drift rate of 72.44 mV/h. Thus, we expect this research to have important applications for high-sensitivity biosensors.</description><subject>Biosensors</subject><subject>Chemical sensors</subject><subject>Drift rate</subject><subject>Field effect transistors</subject><subject>Insulators</subject><subject>Linearity</subject><subject>Organic chemistry</subject><subject>Semiconductor devices</subject><subject>Sensitivity</subject><subject>Sensors</subject><subject>Silicon dioxide</subject><subject>Single wall carbon nanotubes</subject><subject>Tantalum</subject><subject>Tantalum oxides</subject><subject>Thin film transistors</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqdkUtPFTEUxydGEwmy8Bs0caXJYF_TTpeGIJKQsFDXzZk-7u11bju2HQhfhM9r4RJhzVn0nLa__M-r6z4SfEqwYF_J6YAHxaR40x1RMow9o1S8fRG_705K2eFmXBE88qPu_qfbB5OiXU0NcYNKO2bX38I8O4sM5ClFFCGmuk4ORVdvU_7TT1Dar03r1NgNVIfqNsTeh3mPaoZYQqkpF-RTRtuw2faLyy3eQzQOwd_VpbUgs31IDTMqLpYGwrLM7V5DiuVD987DXNzJkz_ufn8__3X2o7-6vrg8-3bVG07H2hOJiR-ddNIzPkjMlFdAhMSGUk6doWLylIyCCWkEYV4JKzlw5b2y1mPKjrvLg65NsNNLDnvIdzpB0I8PKW805BrM7DRmjEtrySCBcOyFEsbxwWLKDXeU46b16aC15NRaLFXv0ppjK19TwihXQuGxUZ8PlMmplOz8_6wE64ctaqKfttjYLwe2mFAfB_M6-CblZ1Av1rN_q9etCg</recordid><startdate>201811</startdate><enddate>201811</enddate><creator>Hong, Eun-Ki</creator><creator>Cho, Won-Ju</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7198-4129</orcidid></search><sort><creationdate>201811</creationdate><title>Semiconducting single-walled carbon nanotube network-based double-gate thin-film transistors for high-performance aqueous chemical sensor applications</title><author>Hong, Eun-Ki ; Cho, Won-Ju</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-1701f8e7e7f3457039f9a1670c2242ec26bf2186367c613f96d74a49ff9ddf023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biosensors</topic><topic>Chemical sensors</topic><topic>Drift rate</topic><topic>Field effect transistors</topic><topic>Insulators</topic><topic>Linearity</topic><topic>Organic chemistry</topic><topic>Semiconductor devices</topic><topic>Sensitivity</topic><topic>Sensors</topic><topic>Silicon dioxide</topic><topic>Single wall carbon nanotubes</topic><topic>Tantalum</topic><topic>Tantalum oxides</topic><topic>Thin film transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hong, Eun-Ki</creatorcontrib><creatorcontrib>Cho, Won-Ju</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hong, Eun-Ki</au><au>Cho, Won-Ju</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semiconducting single-walled carbon nanotube network-based double-gate thin-film transistors for high-performance aqueous chemical sensor applications</atitle><jtitle>AIP advances</jtitle><date>2018-11</date><risdate>2018</risdate><volume>8</volume><issue>11</issue><spage>115312</spage><epage>115312-5</epage><pages>115312-115312-5</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>In this study, we fabricated a highly sensitive separative extended gate chemically modified field effect transistor (SEG-ChemFET) sensor using a semiconducting single-walled carbon nanotube (scSWCNT) network. To improve the stability and sensitivity of the scSWNT channel layer, we fabricated a double-gate structure FET transducer with a passivated channel using top- and bottom-gate insulators and applied a separate sensing membrane. The scSWCNT network channel was formed by solution process. In order to increase the sensitivity, a low-k spin-on-glass (SOG) film and a stacked Ta2O5/SiO2 film were formed as top-gate and engineered bottom-gate insulators, respectively, which improved the coupling ratio. As a result, the fabricated scSWCNT ChemFET sensor exhibited sensitivity of 365.65 mV/pH sensitivity, which is much higher than the Nernst limit (59.5 mV/pH), a linearity of 99.88%, and a drift rate of 72.44 mV/h. Thus, we expect this research to have important applications for high-sensitivity biosensors.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5059376</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-7198-4129</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-3226
ispartof AIP advances, 2018-11, Vol.8 (11), p.115312-115312-5
issn 2158-3226
2158-3226
language eng
recordid cdi_proquest_journals_2132496908
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Biosensors
Chemical sensors
Drift rate
Field effect transistors
Insulators
Linearity
Organic chemistry
Semiconductor devices
Sensitivity
Sensors
Silicon dioxide
Single wall carbon nanotubes
Tantalum
Tantalum oxides
Thin film transistors
title Semiconducting single-walled carbon nanotube network-based double-gate thin-film transistors for high-performance aqueous chemical sensor applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T08%3A56%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semiconducting%20single-walled%20carbon%20nanotube%20network-based%20double-gate%20thin-film%20transistors%20for%20high-performance%20aqueous%20chemical%20sensor%20applications&rft.jtitle=AIP%20advances&rft.au=Hong,%20Eun-Ki&rft.date=2018-11&rft.volume=8&rft.issue=11&rft.spage=115312&rft.epage=115312-5&rft.pages=115312-115312-5&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/1.5059376&rft_dat=%3Cproquest_cross%3E2132496908%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132496908&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_03347dd157a140f696ce45d024c4e240&rfr_iscdi=true