Tamarind seed polysaccharide biopolymer membrane for lithium-ion conducting battery

Solid biopolymers have gained much attention in the development of polymer electrolytes due to its biocompatibility, film-forming nature, and non-toxicity. In the present work, biopolymer membrane has been prepared using tamarind seed polysaccharide (TSP) as host polymer and various concentrations o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ionics 2018-12, Vol.24 (12), p.3793-3803
Hauptverfasser: Kumar, L. Sampath, Selvin, P. Christopher, Selvasekarapandian, S., Manjuladevi, R., Monisha, S., Perumal, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3803
container_issue 12
container_start_page 3793
container_title Ionics
container_volume 24
creator Kumar, L. Sampath
Selvin, P. Christopher
Selvasekarapandian, S.
Manjuladevi, R.
Monisha, S.
Perumal, P.
description Solid biopolymers have gained much attention in the development of polymer electrolytes due to its biocompatibility, film-forming nature, and non-toxicity. In the present work, biopolymer membrane has been prepared using tamarind seed polysaccharide (TSP) as host polymer and various concentrations of lithium chloride (LiCl) salt as dopant by solution casting technique. The prepared biopolymer electrolyte has been characterized by XRD, FTIR, differential scanning calorimetry (DSC) analysis, AC impedance spectroscopy analysis, and transference number measurement. XRD analysis has been done to investigate the amorphous/crystalline nature of the polymer membrane. The highest amorphous nature has been found for 1 g of TSP with 0.4 g LiCl. FTIR spectrum analysis confirms the complex formation between TSP biopolymer with LiCl. From AC impedance conductivity analysis, the maximum ionic conductivity is of the order of 6.7 × 10 −3  S cm −1 at room temperature for 1 g TSP with 0.4 g LiCl, whereas for pure TSP biopolymer membrane, the ionic conductivity is of the order of 5.48 × 10 −7  S cm −1 . The glass transition temperature for the highest conducting biopolymer membrane for the composition of 1 g TSP: 0.4 g LiCl has been found to be 44.25 °C using the DSC technique. Employing the maximum conducting biopolymer membrane, a lithium-ion conducting battery has been fabricated and its discharge characteristics have been studied.
doi_str_mv 10.1007/s11581-018-2541-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2132319736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2132319736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-b16d4803741ad9e427a2dfdc9790d983aa2fd62385639680a8f94a83e634c1093</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWKsP4C7gOpqTpLkspagVCi6s65BJMu2UzqQmM4u-vVNGcOXqwM9_4XwI3QN9BErVUwFYaCAUNGELAYRfoBloyQhVkl6iGTVCEUWFukY3pewplRKYmqHPjWtdbrqAS4wBH9PhVJz3u1ELEVdNOittzLiNbZVdF3GdMj40_a4ZWtKkDvvUhcH3TbfFlev7mE-36Kp2hxLvfu8cfb2-bJYrsv54e18-r4nnmvWkAhmEplwJcMFEwZRjoQ7eKEOD0dw5VgfJuF5IbqSmTtdGOM2j5MIDNXyOHqbeY07fQyy93achd-OkZcAZB6O4HF0wuXxOpeRY22Nuxp9PFqg9s7MTOzuys2d2lo8ZNmXK6O22Mf81_x_6ARWccaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132319736</pqid></control><display><type>article</type><title>Tamarind seed polysaccharide biopolymer membrane for lithium-ion conducting battery</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kumar, L. Sampath ; Selvin, P. Christopher ; Selvasekarapandian, S. ; Manjuladevi, R. ; Monisha, S. ; Perumal, P.</creator><creatorcontrib>Kumar, L. Sampath ; Selvin, P. Christopher ; Selvasekarapandian, S. ; Manjuladevi, R. ; Monisha, S. ; Perumal, P.</creatorcontrib><description>Solid biopolymers have gained much attention in the development of polymer electrolytes due to its biocompatibility, film-forming nature, and non-toxicity. In the present work, biopolymer membrane has been prepared using tamarind seed polysaccharide (TSP) as host polymer and various concentrations of lithium chloride (LiCl) salt as dopant by solution casting technique. The prepared biopolymer electrolyte has been characterized by XRD, FTIR, differential scanning calorimetry (DSC) analysis, AC impedance spectroscopy analysis, and transference number measurement. XRD analysis has been done to investigate the amorphous/crystalline nature of the polymer membrane. The highest amorphous nature has been found for 1 g of TSP with 0.4 g LiCl. FTIR spectrum analysis confirms the complex formation between TSP biopolymer with LiCl. From AC impedance conductivity analysis, the maximum ionic conductivity is of the order of 6.7 × 10 −3  S cm −1 at room temperature for 1 g TSP with 0.4 g LiCl, whereas for pure TSP biopolymer membrane, the ionic conductivity is of the order of 5.48 × 10 −7  S cm −1 . The glass transition temperature for the highest conducting biopolymer membrane for the composition of 1 g TSP: 0.4 g LiCl has been found to be 44.25 °C using the DSC technique. Employing the maximum conducting biopolymer membrane, a lithium-ion conducting battery has been fabricated and its discharge characteristics have been studied.</description><identifier>ISSN: 0947-7047</identifier><identifier>EISSN: 1862-0760</identifier><identifier>DOI: 10.1007/s11581-018-2541-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biocompatibility ; Biopolymers ; Chemistry ; Chemistry and Materials Science ; Complex formation ; Condensed Matter Physics ; Differential scanning calorimetry ; Electrochemistry ; Electrolytes ; Energy Storage ; Glass transition temperature ; Ion currents ; Lithium ; Lithium chloride ; Lithium ions ; Optical and Electronic Materials ; Original Paper ; Polymers ; Polysaccharides ; Rechargeable batteries ; Renewable and Green Energy ; Spectrum analysis ; Tamarind ; Toxicity ; X-ray diffraction</subject><ispartof>Ionics, 2018-12, Vol.24 (12), p.3793-3803</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-b16d4803741ad9e427a2dfdc9790d983aa2fd62385639680a8f94a83e634c1093</citedby><cites>FETCH-LOGICAL-c382t-b16d4803741ad9e427a2dfdc9790d983aa2fd62385639680a8f94a83e634c1093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11581-018-2541-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11581-018-2541-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Kumar, L. Sampath</creatorcontrib><creatorcontrib>Selvin, P. Christopher</creatorcontrib><creatorcontrib>Selvasekarapandian, S.</creatorcontrib><creatorcontrib>Manjuladevi, R.</creatorcontrib><creatorcontrib>Monisha, S.</creatorcontrib><creatorcontrib>Perumal, P.</creatorcontrib><title>Tamarind seed polysaccharide biopolymer membrane for lithium-ion conducting battery</title><title>Ionics</title><addtitle>Ionics</addtitle><description>Solid biopolymers have gained much attention in the development of polymer electrolytes due to its biocompatibility, film-forming nature, and non-toxicity. In the present work, biopolymer membrane has been prepared using tamarind seed polysaccharide (TSP) as host polymer and various concentrations of lithium chloride (LiCl) salt as dopant by solution casting technique. The prepared biopolymer electrolyte has been characterized by XRD, FTIR, differential scanning calorimetry (DSC) analysis, AC impedance spectroscopy analysis, and transference number measurement. XRD analysis has been done to investigate the amorphous/crystalline nature of the polymer membrane. The highest amorphous nature has been found for 1 g of TSP with 0.4 g LiCl. FTIR spectrum analysis confirms the complex formation between TSP biopolymer with LiCl. From AC impedance conductivity analysis, the maximum ionic conductivity is of the order of 6.7 × 10 −3  S cm −1 at room temperature for 1 g TSP with 0.4 g LiCl, whereas for pure TSP biopolymer membrane, the ionic conductivity is of the order of 5.48 × 10 −7  S cm −1 . The glass transition temperature for the highest conducting biopolymer membrane for the composition of 1 g TSP: 0.4 g LiCl has been found to be 44.25 °C using the DSC technique. Employing the maximum conducting biopolymer membrane, a lithium-ion conducting battery has been fabricated and its discharge characteristics have been studied.</description><subject>Biocompatibility</subject><subject>Biopolymers</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Complex formation</subject><subject>Condensed Matter Physics</subject><subject>Differential scanning calorimetry</subject><subject>Electrochemistry</subject><subject>Electrolytes</subject><subject>Energy Storage</subject><subject>Glass transition temperature</subject><subject>Ion currents</subject><subject>Lithium</subject><subject>Lithium chloride</subject><subject>Lithium ions</subject><subject>Optical and Electronic Materials</subject><subject>Original Paper</subject><subject>Polymers</subject><subject>Polysaccharides</subject><subject>Rechargeable batteries</subject><subject>Renewable and Green Energy</subject><subject>Spectrum analysis</subject><subject>Tamarind</subject><subject>Toxicity</subject><subject>X-ray diffraction</subject><issn>0947-7047</issn><issn>1862-0760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKAzEUhoMoWKsP4C7gOpqTpLkspagVCi6s65BJMu2UzqQmM4u-vVNGcOXqwM9_4XwI3QN9BErVUwFYaCAUNGELAYRfoBloyQhVkl6iGTVCEUWFukY3pewplRKYmqHPjWtdbrqAS4wBH9PhVJz3u1ELEVdNOittzLiNbZVdF3GdMj40_a4ZWtKkDvvUhcH3TbfFlev7mE-36Kp2hxLvfu8cfb2-bJYrsv54e18-r4nnmvWkAhmEplwJcMFEwZRjoQ7eKEOD0dw5VgfJuF5IbqSmTtdGOM2j5MIDNXyOHqbeY07fQyy93achd-OkZcAZB6O4HF0wuXxOpeRY22Nuxp9PFqg9s7MTOzuys2d2lo8ZNmXK6O22Mf81_x_6ARWccaw</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Kumar, L. Sampath</creator><creator>Selvin, P. Christopher</creator><creator>Selvasekarapandian, S.</creator><creator>Manjuladevi, R.</creator><creator>Monisha, S.</creator><creator>Perumal, P.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181201</creationdate><title>Tamarind seed polysaccharide biopolymer membrane for lithium-ion conducting battery</title><author>Kumar, L. Sampath ; Selvin, P. Christopher ; Selvasekarapandian, S. ; Manjuladevi, R. ; Monisha, S. ; Perumal, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-b16d4803741ad9e427a2dfdc9790d983aa2fd62385639680a8f94a83e634c1093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biocompatibility</topic><topic>Biopolymers</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Complex formation</topic><topic>Condensed Matter Physics</topic><topic>Differential scanning calorimetry</topic><topic>Electrochemistry</topic><topic>Electrolytes</topic><topic>Energy Storage</topic><topic>Glass transition temperature</topic><topic>Ion currents</topic><topic>Lithium</topic><topic>Lithium chloride</topic><topic>Lithium ions</topic><topic>Optical and Electronic Materials</topic><topic>Original Paper</topic><topic>Polymers</topic><topic>Polysaccharides</topic><topic>Rechargeable batteries</topic><topic>Renewable and Green Energy</topic><topic>Spectrum analysis</topic><topic>Tamarind</topic><topic>Toxicity</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, L. Sampath</creatorcontrib><creatorcontrib>Selvin, P. Christopher</creatorcontrib><creatorcontrib>Selvasekarapandian, S.</creatorcontrib><creatorcontrib>Manjuladevi, R.</creatorcontrib><creatorcontrib>Monisha, S.</creatorcontrib><creatorcontrib>Perumal, P.</creatorcontrib><collection>CrossRef</collection><jtitle>Ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, L. Sampath</au><au>Selvin, P. Christopher</au><au>Selvasekarapandian, S.</au><au>Manjuladevi, R.</au><au>Monisha, S.</au><au>Perumal, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tamarind seed polysaccharide biopolymer membrane for lithium-ion conducting battery</atitle><jtitle>Ionics</jtitle><stitle>Ionics</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>24</volume><issue>12</issue><spage>3793</spage><epage>3803</epage><pages>3793-3803</pages><issn>0947-7047</issn><eissn>1862-0760</eissn><abstract>Solid biopolymers have gained much attention in the development of polymer electrolytes due to its biocompatibility, film-forming nature, and non-toxicity. In the present work, biopolymer membrane has been prepared using tamarind seed polysaccharide (TSP) as host polymer and various concentrations of lithium chloride (LiCl) salt as dopant by solution casting technique. The prepared biopolymer electrolyte has been characterized by XRD, FTIR, differential scanning calorimetry (DSC) analysis, AC impedance spectroscopy analysis, and transference number measurement. XRD analysis has been done to investigate the amorphous/crystalline nature of the polymer membrane. The highest amorphous nature has been found for 1 g of TSP with 0.4 g LiCl. FTIR spectrum analysis confirms the complex formation between TSP biopolymer with LiCl. From AC impedance conductivity analysis, the maximum ionic conductivity is of the order of 6.7 × 10 −3  S cm −1 at room temperature for 1 g TSP with 0.4 g LiCl, whereas for pure TSP biopolymer membrane, the ionic conductivity is of the order of 5.48 × 10 −7  S cm −1 . The glass transition temperature for the highest conducting biopolymer membrane for the composition of 1 g TSP: 0.4 g LiCl has been found to be 44.25 °C using the DSC technique. Employing the maximum conducting biopolymer membrane, a lithium-ion conducting battery has been fabricated and its discharge characteristics have been studied.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11581-018-2541-3</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-7047
ispartof Ionics, 2018-12, Vol.24 (12), p.3793-3803
issn 0947-7047
1862-0760
language eng
recordid cdi_proquest_journals_2132319736
source SpringerLink Journals - AutoHoldings
subjects Biocompatibility
Biopolymers
Chemistry
Chemistry and Materials Science
Complex formation
Condensed Matter Physics
Differential scanning calorimetry
Electrochemistry
Electrolytes
Energy Storage
Glass transition temperature
Ion currents
Lithium
Lithium chloride
Lithium ions
Optical and Electronic Materials
Original Paper
Polymers
Polysaccharides
Rechargeable batteries
Renewable and Green Energy
Spectrum analysis
Tamarind
Toxicity
X-ray diffraction
title Tamarind seed polysaccharide biopolymer membrane for lithium-ion conducting battery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A33%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tamarind%20seed%20polysaccharide%20biopolymer%20membrane%20for%20lithium-ion%20conducting%20battery&rft.jtitle=Ionics&rft.au=Kumar,%20L.%20Sampath&rft.date=2018-12-01&rft.volume=24&rft.issue=12&rft.spage=3793&rft.epage=3803&rft.pages=3793-3803&rft.issn=0947-7047&rft.eissn=1862-0760&rft_id=info:doi/10.1007/s11581-018-2541-3&rft_dat=%3Cproquest_cross%3E2132319736%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132319736&rft_id=info:pmid/&rfr_iscdi=true