Tamarind seed polysaccharide biopolymer membrane for lithium-ion conducting battery
Solid biopolymers have gained much attention in the development of polymer electrolytes due to its biocompatibility, film-forming nature, and non-toxicity. In the present work, biopolymer membrane has been prepared using tamarind seed polysaccharide (TSP) as host polymer and various concentrations o...
Gespeichert in:
Veröffentlicht in: | Ionics 2018-12, Vol.24 (12), p.3793-3803 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3803 |
---|---|
container_issue | 12 |
container_start_page | 3793 |
container_title | Ionics |
container_volume | 24 |
creator | Kumar, L. Sampath Selvin, P. Christopher Selvasekarapandian, S. Manjuladevi, R. Monisha, S. Perumal, P. |
description | Solid biopolymers have gained much attention in the development of polymer electrolytes due to its biocompatibility, film-forming nature, and non-toxicity. In the present work, biopolymer membrane has been prepared using tamarind seed polysaccharide (TSP) as host polymer and various concentrations of lithium chloride (LiCl) salt as dopant by solution casting technique. The prepared biopolymer electrolyte has been characterized by XRD, FTIR, differential scanning calorimetry (DSC) analysis, AC impedance spectroscopy analysis, and transference number measurement. XRD analysis has been done to investigate the amorphous/crystalline nature of the polymer membrane. The highest amorphous nature has been found for 1 g of TSP with 0.4 g LiCl. FTIR spectrum analysis confirms the complex formation between TSP biopolymer with LiCl. From AC impedance conductivity analysis, the maximum ionic conductivity is of the order of 6.7 × 10
−3
S cm
−1
at room temperature for 1 g TSP with 0.4 g LiCl, whereas for pure TSP biopolymer membrane, the ionic conductivity is of the order of 5.48 × 10
−7
S cm
−1
. The glass transition temperature for the highest conducting biopolymer membrane for the composition of 1 g TSP: 0.4 g LiCl has been found to be 44.25 °C using the DSC technique. Employing the maximum conducting biopolymer membrane, a lithium-ion conducting battery has been fabricated and its discharge characteristics have been studied. |
doi_str_mv | 10.1007/s11581-018-2541-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2132319736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2132319736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-b16d4803741ad9e427a2dfdc9790d983aa2fd62385639680a8f94a83e634c1093</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWKsP4C7gOpqTpLkspagVCi6s65BJMu2UzqQmM4u-vVNGcOXqwM9_4XwI3QN9BErVUwFYaCAUNGELAYRfoBloyQhVkl6iGTVCEUWFukY3pewplRKYmqHPjWtdbrqAS4wBH9PhVJz3u1ELEVdNOittzLiNbZVdF3GdMj40_a4ZWtKkDvvUhcH3TbfFlev7mE-36Kp2hxLvfu8cfb2-bJYrsv54e18-r4nnmvWkAhmEplwJcMFEwZRjoQ7eKEOD0dw5VgfJuF5IbqSmTtdGOM2j5MIDNXyOHqbeY07fQyy93achd-OkZcAZB6O4HF0wuXxOpeRY22Nuxp9PFqg9s7MTOzuys2d2lo8ZNmXK6O22Mf81_x_6ARWccaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132319736</pqid></control><display><type>article</type><title>Tamarind seed polysaccharide biopolymer membrane for lithium-ion conducting battery</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kumar, L. Sampath ; Selvin, P. Christopher ; Selvasekarapandian, S. ; Manjuladevi, R. ; Monisha, S. ; Perumal, P.</creator><creatorcontrib>Kumar, L. Sampath ; Selvin, P. Christopher ; Selvasekarapandian, S. ; Manjuladevi, R. ; Monisha, S. ; Perumal, P.</creatorcontrib><description>Solid biopolymers have gained much attention in the development of polymer electrolytes due to its biocompatibility, film-forming nature, and non-toxicity. In the present work, biopolymer membrane has been prepared using tamarind seed polysaccharide (TSP) as host polymer and various concentrations of lithium chloride (LiCl) salt as dopant by solution casting technique. The prepared biopolymer electrolyte has been characterized by XRD, FTIR, differential scanning calorimetry (DSC) analysis, AC impedance spectroscopy analysis, and transference number measurement. XRD analysis has been done to investigate the amorphous/crystalline nature of the polymer membrane. The highest amorphous nature has been found for 1 g of TSP with 0.4 g LiCl. FTIR spectrum analysis confirms the complex formation between TSP biopolymer with LiCl. From AC impedance conductivity analysis, the maximum ionic conductivity is of the order of 6.7 × 10
−3
S cm
−1
at room temperature for 1 g TSP with 0.4 g LiCl, whereas for pure TSP biopolymer membrane, the ionic conductivity is of the order of 5.48 × 10
−7
S cm
−1
. The glass transition temperature for the highest conducting biopolymer membrane for the composition of 1 g TSP: 0.4 g LiCl has been found to be 44.25 °C using the DSC technique. Employing the maximum conducting biopolymer membrane, a lithium-ion conducting battery has been fabricated and its discharge characteristics have been studied.</description><identifier>ISSN: 0947-7047</identifier><identifier>EISSN: 1862-0760</identifier><identifier>DOI: 10.1007/s11581-018-2541-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biocompatibility ; Biopolymers ; Chemistry ; Chemistry and Materials Science ; Complex formation ; Condensed Matter Physics ; Differential scanning calorimetry ; Electrochemistry ; Electrolytes ; Energy Storage ; Glass transition temperature ; Ion currents ; Lithium ; Lithium chloride ; Lithium ions ; Optical and Electronic Materials ; Original Paper ; Polymers ; Polysaccharides ; Rechargeable batteries ; Renewable and Green Energy ; Spectrum analysis ; Tamarind ; Toxicity ; X-ray diffraction</subject><ispartof>Ionics, 2018-12, Vol.24 (12), p.3793-3803</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-b16d4803741ad9e427a2dfdc9790d983aa2fd62385639680a8f94a83e634c1093</citedby><cites>FETCH-LOGICAL-c382t-b16d4803741ad9e427a2dfdc9790d983aa2fd62385639680a8f94a83e634c1093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11581-018-2541-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11581-018-2541-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Kumar, L. Sampath</creatorcontrib><creatorcontrib>Selvin, P. Christopher</creatorcontrib><creatorcontrib>Selvasekarapandian, S.</creatorcontrib><creatorcontrib>Manjuladevi, R.</creatorcontrib><creatorcontrib>Monisha, S.</creatorcontrib><creatorcontrib>Perumal, P.</creatorcontrib><title>Tamarind seed polysaccharide biopolymer membrane for lithium-ion conducting battery</title><title>Ionics</title><addtitle>Ionics</addtitle><description>Solid biopolymers have gained much attention in the development of polymer electrolytes due to its biocompatibility, film-forming nature, and non-toxicity. In the present work, biopolymer membrane has been prepared using tamarind seed polysaccharide (TSP) as host polymer and various concentrations of lithium chloride (LiCl) salt as dopant by solution casting technique. The prepared biopolymer electrolyte has been characterized by XRD, FTIR, differential scanning calorimetry (DSC) analysis, AC impedance spectroscopy analysis, and transference number measurement. XRD analysis has been done to investigate the amorphous/crystalline nature of the polymer membrane. The highest amorphous nature has been found for 1 g of TSP with 0.4 g LiCl. FTIR spectrum analysis confirms the complex formation between TSP biopolymer with LiCl. From AC impedance conductivity analysis, the maximum ionic conductivity is of the order of 6.7 × 10
−3
S cm
−1
at room temperature for 1 g TSP with 0.4 g LiCl, whereas for pure TSP biopolymer membrane, the ionic conductivity is of the order of 5.48 × 10
−7
S cm
−1
. The glass transition temperature for the highest conducting biopolymer membrane for the composition of 1 g TSP: 0.4 g LiCl has been found to be 44.25 °C using the DSC technique. Employing the maximum conducting biopolymer membrane, a lithium-ion conducting battery has been fabricated and its discharge characteristics have been studied.</description><subject>Biocompatibility</subject><subject>Biopolymers</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Complex formation</subject><subject>Condensed Matter Physics</subject><subject>Differential scanning calorimetry</subject><subject>Electrochemistry</subject><subject>Electrolytes</subject><subject>Energy Storage</subject><subject>Glass transition temperature</subject><subject>Ion currents</subject><subject>Lithium</subject><subject>Lithium chloride</subject><subject>Lithium ions</subject><subject>Optical and Electronic Materials</subject><subject>Original Paper</subject><subject>Polymers</subject><subject>Polysaccharides</subject><subject>Rechargeable batteries</subject><subject>Renewable and Green Energy</subject><subject>Spectrum analysis</subject><subject>Tamarind</subject><subject>Toxicity</subject><subject>X-ray diffraction</subject><issn>0947-7047</issn><issn>1862-0760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKAzEUhoMoWKsP4C7gOpqTpLkspagVCi6s65BJMu2UzqQmM4u-vVNGcOXqwM9_4XwI3QN9BErVUwFYaCAUNGELAYRfoBloyQhVkl6iGTVCEUWFukY3pewplRKYmqHPjWtdbrqAS4wBH9PhVJz3u1ELEVdNOittzLiNbZVdF3GdMj40_a4ZWtKkDvvUhcH3TbfFlev7mE-36Kp2hxLvfu8cfb2-bJYrsv54e18-r4nnmvWkAhmEplwJcMFEwZRjoQ7eKEOD0dw5VgfJuF5IbqSmTtdGOM2j5MIDNXyOHqbeY07fQyy93achd-OkZcAZB6O4HF0wuXxOpeRY22Nuxp9PFqg9s7MTOzuys2d2lo8ZNmXK6O22Mf81_x_6ARWccaw</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Kumar, L. Sampath</creator><creator>Selvin, P. Christopher</creator><creator>Selvasekarapandian, S.</creator><creator>Manjuladevi, R.</creator><creator>Monisha, S.</creator><creator>Perumal, P.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181201</creationdate><title>Tamarind seed polysaccharide biopolymer membrane for lithium-ion conducting battery</title><author>Kumar, L. Sampath ; Selvin, P. Christopher ; Selvasekarapandian, S. ; Manjuladevi, R. ; Monisha, S. ; Perumal, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-b16d4803741ad9e427a2dfdc9790d983aa2fd62385639680a8f94a83e634c1093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biocompatibility</topic><topic>Biopolymers</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Complex formation</topic><topic>Condensed Matter Physics</topic><topic>Differential scanning calorimetry</topic><topic>Electrochemistry</topic><topic>Electrolytes</topic><topic>Energy Storage</topic><topic>Glass transition temperature</topic><topic>Ion currents</topic><topic>Lithium</topic><topic>Lithium chloride</topic><topic>Lithium ions</topic><topic>Optical and Electronic Materials</topic><topic>Original Paper</topic><topic>Polymers</topic><topic>Polysaccharides</topic><topic>Rechargeable batteries</topic><topic>Renewable and Green Energy</topic><topic>Spectrum analysis</topic><topic>Tamarind</topic><topic>Toxicity</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, L. Sampath</creatorcontrib><creatorcontrib>Selvin, P. Christopher</creatorcontrib><creatorcontrib>Selvasekarapandian, S.</creatorcontrib><creatorcontrib>Manjuladevi, R.</creatorcontrib><creatorcontrib>Monisha, S.</creatorcontrib><creatorcontrib>Perumal, P.</creatorcontrib><collection>CrossRef</collection><jtitle>Ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, L. Sampath</au><au>Selvin, P. Christopher</au><au>Selvasekarapandian, S.</au><au>Manjuladevi, R.</au><au>Monisha, S.</au><au>Perumal, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tamarind seed polysaccharide biopolymer membrane for lithium-ion conducting battery</atitle><jtitle>Ionics</jtitle><stitle>Ionics</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>24</volume><issue>12</issue><spage>3793</spage><epage>3803</epage><pages>3793-3803</pages><issn>0947-7047</issn><eissn>1862-0760</eissn><abstract>Solid biopolymers have gained much attention in the development of polymer electrolytes due to its biocompatibility, film-forming nature, and non-toxicity. In the present work, biopolymer membrane has been prepared using tamarind seed polysaccharide (TSP) as host polymer and various concentrations of lithium chloride (LiCl) salt as dopant by solution casting technique. The prepared biopolymer electrolyte has been characterized by XRD, FTIR, differential scanning calorimetry (DSC) analysis, AC impedance spectroscopy analysis, and transference number measurement. XRD analysis has been done to investigate the amorphous/crystalline nature of the polymer membrane. The highest amorphous nature has been found for 1 g of TSP with 0.4 g LiCl. FTIR spectrum analysis confirms the complex formation between TSP biopolymer with LiCl. From AC impedance conductivity analysis, the maximum ionic conductivity is of the order of 6.7 × 10
−3
S cm
−1
at room temperature for 1 g TSP with 0.4 g LiCl, whereas for pure TSP biopolymer membrane, the ionic conductivity is of the order of 5.48 × 10
−7
S cm
−1
. The glass transition temperature for the highest conducting biopolymer membrane for the composition of 1 g TSP: 0.4 g LiCl has been found to be 44.25 °C using the DSC technique. Employing the maximum conducting biopolymer membrane, a lithium-ion conducting battery has been fabricated and its discharge characteristics have been studied.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11581-018-2541-3</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-7047 |
ispartof | Ionics, 2018-12, Vol.24 (12), p.3793-3803 |
issn | 0947-7047 1862-0760 |
language | eng |
recordid | cdi_proquest_journals_2132319736 |
source | SpringerLink Journals - AutoHoldings |
subjects | Biocompatibility Biopolymers Chemistry Chemistry and Materials Science Complex formation Condensed Matter Physics Differential scanning calorimetry Electrochemistry Electrolytes Energy Storage Glass transition temperature Ion currents Lithium Lithium chloride Lithium ions Optical and Electronic Materials Original Paper Polymers Polysaccharides Rechargeable batteries Renewable and Green Energy Spectrum analysis Tamarind Toxicity X-ray diffraction |
title | Tamarind seed polysaccharide biopolymer membrane for lithium-ion conducting battery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A33%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tamarind%20seed%20polysaccharide%20biopolymer%20membrane%20for%20lithium-ion%20conducting%20battery&rft.jtitle=Ionics&rft.au=Kumar,%20L.%20Sampath&rft.date=2018-12-01&rft.volume=24&rft.issue=12&rft.spage=3793&rft.epage=3803&rft.pages=3793-3803&rft.issn=0947-7047&rft.eissn=1862-0760&rft_id=info:doi/10.1007/s11581-018-2541-3&rft_dat=%3Cproquest_cross%3E2132319736%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132319736&rft_id=info:pmid/&rfr_iscdi=true |