Minimization of Tree Patterns
Many of today’s graph query languages are based on graph pattern matching. We investigate optimization of tree-shaped patterns that have transitive closure operators. Such patterns not only appear in the context of graph databases but also were originally studied for querying tree-structured data, w...
Gespeichert in:
Veröffentlicht in: | Journal of the ACM 2018-08, Vol.65 (4), p.1-46 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Many of today’s graph query languages are based on graph pattern matching. We investigate optimization of tree-shaped patterns that have transitive closure operators. Such patterns not only appear in the context of graph databases but also were originally studied for querying tree-structured data, where they can perform child, descendant, node label, and wildcard tests.
The
minimization
problem aims at reducing the number of nodes in patterns and goes back to the early 2000s. We provide an example showing that, in contrast to earlier claims, tree patterns cannot be minimized by deleting nodes only. The example resolves the M =
?
NR problem, which asks if a tree pattern is minimal if and only if it is nonredundant. The example can be adapted to prove that minimization is Σ
P
2
-complete, which resolves another question that was open since the early research on the problem. The latter result shows that, unless NP = Π
P
2
, more general approaches for minimizing tree patterns are also bound to fail in general. |
---|---|
ISSN: | 0004-5411 1557-735X |
DOI: | 10.1145/3180281 |