Multi-scale toughening of epoxy composites via electric field alignment of carbon nanofibres and short carbon fibres
The present paper demonstrates that multi-scale fillers such as carbon nanofibres (CNFs) and short carbon fibres (SCFs) can significantly improve the mode I fracture toughness of epoxy composites by various toughening mechanisms. A comparative assessment on the toughening performance promoted by CNF...
Gespeichert in:
Veröffentlicht in: | Composites science and technology 2018-10, Vol.167, p.115-125 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 125 |
---|---|
container_issue | |
container_start_page | 115 |
container_title | Composites science and technology |
container_volume | 167 |
creator | Ravindran, Anil R. Ladani, Raj B. Wu, Shuying Kinloch, Anthony J. Wang, Chun H. Mouritz, Adrian P. |
description | The present paper demonstrates that multi-scale fillers such as carbon nanofibres (CNFs) and short carbon fibres (SCFs) can significantly improve the mode I fracture toughness of epoxy composites by various toughening mechanisms. A comparative assessment on the toughening performance promoted by CNFs and SCFs is presented along with the effects of aligning the filler normal to the crack growth using an applied alternating current (AC) electric field. For SCF concentrations of up to 1.5 wt%, with a concentration of CNFs of 1.0 wt%, the multi-scale, hybrid reinforcements additively toughen the epoxy polymer, with the measured fracture toughness being up to about fourteen times the value of the unmodified epoxy polymer. When subjected to an external AC electric field, these two reinforcements rapidly align along the direction of the electrical field in epoxy resin, with the CNFs concentrating between the ends of, and depositing on, the SCFs. For the same concentrations of SCFs and CNFs, the electric field induced alignment of the CNFs and the SCFs further increases the fracture toughness of the multi-scale toughened or hybrid epoxy polymer by up to twenty times that of the unmodified epoxy polymer. The intrinsic and extrinsic toughening mechanisms spanning the nano-to-millimetre length scale have been identified, based upon which an analytical model has been proposed.
[Display omitted] |
doi_str_mv | 10.1016/j.compscitech.2018.07.034 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2132228318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0266353818301714</els_id><sourcerecordid>2132228318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-ea671168389958db6273431165f1c9a4efddcc921727a913d7d96caf9240791b3</originalsourceid><addsrcrecordid>eNqNkEtLAzEUhYMoWKv_IeJ6xjxmJpOlFF-guNF1SJM7bco0qUla7L83pQouXV0495xzuR9C15TUlNDudlWbsN4k4zKYZc0I7WsiasKbEzShvZAVJS05RRPCuq7iLe_P0UVKK0KIaCWboPy6HbOrktEj4By2iyV45xc4DBg24WuPD_UhlfqEd05jGMHk6AweHIwW69Et_Bp8PgSMjvPgsdc-DG4eS0J7i9MyxPy7O-qX6GzQY4KrnzlFHw_377On6uXt8Xl291KZhotcge4EpV3Peynb3s47JnjDi9IO1EjdwGCtMZJRwYSWlFthZWf0IFlDhKRzPkU3x95NDJ9bSFmtwjb6clIxyhljPad9ccmjy8SQUoRBbaJb67hXlKgDZLVSfyCrA2RFhCqQS3Z2zEJ5Y-cgquICb8C6WEApG9w_Wr4BbOmNNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132228318</pqid></control><display><type>article</type><title>Multi-scale toughening of epoxy composites via electric field alignment of carbon nanofibres and short carbon fibres</title><source>Elsevier ScienceDirect Journals</source><creator>Ravindran, Anil R. ; Ladani, Raj B. ; Wu, Shuying ; Kinloch, Anthony J. ; Wang, Chun H. ; Mouritz, Adrian P.</creator><creatorcontrib>Ravindran, Anil R. ; Ladani, Raj B. ; Wu, Shuying ; Kinloch, Anthony J. ; Wang, Chun H. ; Mouritz, Adrian P.</creatorcontrib><description>The present paper demonstrates that multi-scale fillers such as carbon nanofibres (CNFs) and short carbon fibres (SCFs) can significantly improve the mode I fracture toughness of epoxy composites by various toughening mechanisms. A comparative assessment on the toughening performance promoted by CNFs and SCFs is presented along with the effects of aligning the filler normal to the crack growth using an applied alternating current (AC) electric field. For SCF concentrations of up to 1.5 wt%, with a concentration of CNFs of 1.0 wt%, the multi-scale, hybrid reinforcements additively toughen the epoxy polymer, with the measured fracture toughness being up to about fourteen times the value of the unmodified epoxy polymer. When subjected to an external AC electric field, these two reinforcements rapidly align along the direction of the electrical field in epoxy resin, with the CNFs concentrating between the ends of, and depositing on, the SCFs. For the same concentrations of SCFs and CNFs, the electric field induced alignment of the CNFs and the SCFs further increases the fracture toughness of the multi-scale toughened or hybrid epoxy polymer by up to twenty times that of the unmodified epoxy polymer. The intrinsic and extrinsic toughening mechanisms spanning the nano-to-millimetre length scale have been identified, based upon which an analytical model has been proposed.
[Display omitted]</description><identifier>ISSN: 0266-3538</identifier><identifier>EISSN: 1879-1050</identifier><identifier>DOI: 10.1016/j.compscitech.2018.07.034</identifier><language>eng</language><publisher>Barking: Elsevier Ltd</publisher><subject>A: Nanocomposites ; A: Short-fibre composites ; Alignment ; Alternating current ; B: Fracture toughness ; C: Multiscale modelling ; Carbon fiber reinforced plastics ; Carbon fibers ; Crack propagation ; Electric fields ; Epoxy resins ; Fillers ; Fracture toughness ; Mathematical models ; Nanocomposites ; Nanofibers ; Polymer matrix composites ; Toughening</subject><ispartof>Composites science and technology, 2018-10, Vol.167, p.115-125</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 20, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-ea671168389958db6273431165f1c9a4efddcc921727a913d7d96caf9240791b3</citedby><cites>FETCH-LOGICAL-c437t-ea671168389958db6273431165f1c9a4efddcc921727a913d7d96caf9240791b3</cites><orcidid>0000-0001-6081-1487 ; 0000-0002-6585-8898</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0266353818301714$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Ravindran, Anil R.</creatorcontrib><creatorcontrib>Ladani, Raj B.</creatorcontrib><creatorcontrib>Wu, Shuying</creatorcontrib><creatorcontrib>Kinloch, Anthony J.</creatorcontrib><creatorcontrib>Wang, Chun H.</creatorcontrib><creatorcontrib>Mouritz, Adrian P.</creatorcontrib><title>Multi-scale toughening of epoxy composites via electric field alignment of carbon nanofibres and short carbon fibres</title><title>Composites science and technology</title><description>The present paper demonstrates that multi-scale fillers such as carbon nanofibres (CNFs) and short carbon fibres (SCFs) can significantly improve the mode I fracture toughness of epoxy composites by various toughening mechanisms. A comparative assessment on the toughening performance promoted by CNFs and SCFs is presented along with the effects of aligning the filler normal to the crack growth using an applied alternating current (AC) electric field. For SCF concentrations of up to 1.5 wt%, with a concentration of CNFs of 1.0 wt%, the multi-scale, hybrid reinforcements additively toughen the epoxy polymer, with the measured fracture toughness being up to about fourteen times the value of the unmodified epoxy polymer. When subjected to an external AC electric field, these two reinforcements rapidly align along the direction of the electrical field in epoxy resin, with the CNFs concentrating between the ends of, and depositing on, the SCFs. For the same concentrations of SCFs and CNFs, the electric field induced alignment of the CNFs and the SCFs further increases the fracture toughness of the multi-scale toughened or hybrid epoxy polymer by up to twenty times that of the unmodified epoxy polymer. The intrinsic and extrinsic toughening mechanisms spanning the nano-to-millimetre length scale have been identified, based upon which an analytical model has been proposed.
[Display omitted]</description><subject>A: Nanocomposites</subject><subject>A: Short-fibre composites</subject><subject>Alignment</subject><subject>Alternating current</subject><subject>B: Fracture toughness</subject><subject>C: Multiscale modelling</subject><subject>Carbon fiber reinforced plastics</subject><subject>Carbon fibers</subject><subject>Crack propagation</subject><subject>Electric fields</subject><subject>Epoxy resins</subject><subject>Fillers</subject><subject>Fracture toughness</subject><subject>Mathematical models</subject><subject>Nanocomposites</subject><subject>Nanofibers</subject><subject>Polymer matrix composites</subject><subject>Toughening</subject><issn>0266-3538</issn><issn>1879-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNkEtLAzEUhYMoWKv_IeJ6xjxmJpOlFF-guNF1SJM7bco0qUla7L83pQouXV0495xzuR9C15TUlNDudlWbsN4k4zKYZc0I7WsiasKbEzShvZAVJS05RRPCuq7iLe_P0UVKK0KIaCWboPy6HbOrktEj4By2iyV45xc4DBg24WuPD_UhlfqEd05jGMHk6AweHIwW69Et_Bp8PgSMjvPgsdc-DG4eS0J7i9MyxPy7O-qX6GzQY4KrnzlFHw_377On6uXt8Xl291KZhotcge4EpV3Peynb3s47JnjDi9IO1EjdwGCtMZJRwYSWlFthZWf0IFlDhKRzPkU3x95NDJ9bSFmtwjb6clIxyhljPad9ccmjy8SQUoRBbaJb67hXlKgDZLVSfyCrA2RFhCqQS3Z2zEJ5Y-cgquICb8C6WEApG9w_Wr4BbOmNNQ</recordid><startdate>20181020</startdate><enddate>20181020</enddate><creator>Ravindran, Anil R.</creator><creator>Ladani, Raj B.</creator><creator>Wu, Shuying</creator><creator>Kinloch, Anthony J.</creator><creator>Wang, Chun H.</creator><creator>Mouritz, Adrian P.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-6081-1487</orcidid><orcidid>https://orcid.org/0000-0002-6585-8898</orcidid></search><sort><creationdate>20181020</creationdate><title>Multi-scale toughening of epoxy composites via electric field alignment of carbon nanofibres and short carbon fibres</title><author>Ravindran, Anil R. ; Ladani, Raj B. ; Wu, Shuying ; Kinloch, Anthony J. ; Wang, Chun H. ; Mouritz, Adrian P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-ea671168389958db6273431165f1c9a4efddcc921727a913d7d96caf9240791b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>A: Nanocomposites</topic><topic>A: Short-fibre composites</topic><topic>Alignment</topic><topic>Alternating current</topic><topic>B: Fracture toughness</topic><topic>C: Multiscale modelling</topic><topic>Carbon fiber reinforced plastics</topic><topic>Carbon fibers</topic><topic>Crack propagation</topic><topic>Electric fields</topic><topic>Epoxy resins</topic><topic>Fillers</topic><topic>Fracture toughness</topic><topic>Mathematical models</topic><topic>Nanocomposites</topic><topic>Nanofibers</topic><topic>Polymer matrix composites</topic><topic>Toughening</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ravindran, Anil R.</creatorcontrib><creatorcontrib>Ladani, Raj B.</creatorcontrib><creatorcontrib>Wu, Shuying</creatorcontrib><creatorcontrib>Kinloch, Anthony J.</creatorcontrib><creatorcontrib>Wang, Chun H.</creatorcontrib><creatorcontrib>Mouritz, Adrian P.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Composites science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ravindran, Anil R.</au><au>Ladani, Raj B.</au><au>Wu, Shuying</au><au>Kinloch, Anthony J.</au><au>Wang, Chun H.</au><au>Mouritz, Adrian P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-scale toughening of epoxy composites via electric field alignment of carbon nanofibres and short carbon fibres</atitle><jtitle>Composites science and technology</jtitle><date>2018-10-20</date><risdate>2018</risdate><volume>167</volume><spage>115</spage><epage>125</epage><pages>115-125</pages><issn>0266-3538</issn><eissn>1879-1050</eissn><abstract>The present paper demonstrates that multi-scale fillers such as carbon nanofibres (CNFs) and short carbon fibres (SCFs) can significantly improve the mode I fracture toughness of epoxy composites by various toughening mechanisms. A comparative assessment on the toughening performance promoted by CNFs and SCFs is presented along with the effects of aligning the filler normal to the crack growth using an applied alternating current (AC) electric field. For SCF concentrations of up to 1.5 wt%, with a concentration of CNFs of 1.0 wt%, the multi-scale, hybrid reinforcements additively toughen the epoxy polymer, with the measured fracture toughness being up to about fourteen times the value of the unmodified epoxy polymer. When subjected to an external AC electric field, these two reinforcements rapidly align along the direction of the electrical field in epoxy resin, with the CNFs concentrating between the ends of, and depositing on, the SCFs. For the same concentrations of SCFs and CNFs, the electric field induced alignment of the CNFs and the SCFs further increases the fracture toughness of the multi-scale toughened or hybrid epoxy polymer by up to twenty times that of the unmodified epoxy polymer. The intrinsic and extrinsic toughening mechanisms spanning the nano-to-millimetre length scale have been identified, based upon which an analytical model has been proposed.
[Display omitted]</abstract><cop>Barking</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compscitech.2018.07.034</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6081-1487</orcidid><orcidid>https://orcid.org/0000-0002-6585-8898</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0266-3538 |
ispartof | Composites science and technology, 2018-10, Vol.167, p.115-125 |
issn | 0266-3538 1879-1050 |
language | eng |
recordid | cdi_proquest_journals_2132228318 |
source | Elsevier ScienceDirect Journals |
subjects | A: Nanocomposites A: Short-fibre composites Alignment Alternating current B: Fracture toughness C: Multiscale modelling Carbon fiber reinforced plastics Carbon fibers Crack propagation Electric fields Epoxy resins Fillers Fracture toughness Mathematical models Nanocomposites Nanofibers Polymer matrix composites Toughening |
title | Multi-scale toughening of epoxy composites via electric field alignment of carbon nanofibres and short carbon fibres |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A16%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-scale%20toughening%20of%20epoxy%20composites%20via%20electric%20field%20alignment%20of%20carbon%20nanofibres%20and%20short%20carbon%20fibres&rft.jtitle=Composites%20science%20and%20technology&rft.au=Ravindran,%20Anil%20R.&rft.date=2018-10-20&rft.volume=167&rft.spage=115&rft.epage=125&rft.pages=115-125&rft.issn=0266-3538&rft.eissn=1879-1050&rft_id=info:doi/10.1016/j.compscitech.2018.07.034&rft_dat=%3Cproquest_cross%3E2132228318%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132228318&rft_id=info:pmid/&rft_els_id=S0266353818301714&rfr_iscdi=true |