Multi-scale toughening of epoxy composites via electric field alignment of carbon nanofibres and short carbon fibres

The present paper demonstrates that multi-scale fillers such as carbon nanofibres (CNFs) and short carbon fibres (SCFs) can significantly improve the mode I fracture toughness of epoxy composites by various toughening mechanisms. A comparative assessment on the toughening performance promoted by CNF...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composites science and technology 2018-10, Vol.167, p.115-125
Hauptverfasser: Ravindran, Anil R., Ladani, Raj B., Wu, Shuying, Kinloch, Anthony J., Wang, Chun H., Mouritz, Adrian P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 125
container_issue
container_start_page 115
container_title Composites science and technology
container_volume 167
creator Ravindran, Anil R.
Ladani, Raj B.
Wu, Shuying
Kinloch, Anthony J.
Wang, Chun H.
Mouritz, Adrian P.
description The present paper demonstrates that multi-scale fillers such as carbon nanofibres (CNFs) and short carbon fibres (SCFs) can significantly improve the mode I fracture toughness of epoxy composites by various toughening mechanisms. A comparative assessment on the toughening performance promoted by CNFs and SCFs is presented along with the effects of aligning the filler normal to the crack growth using an applied alternating current (AC) electric field. For SCF concentrations of up to 1.5 wt%, with a concentration of CNFs of 1.0 wt%, the multi-scale, hybrid reinforcements additively toughen the epoxy polymer, with the measured fracture toughness being up to about fourteen times the value of the unmodified epoxy polymer. When subjected to an external AC electric field, these two reinforcements rapidly align along the direction of the electrical field in epoxy resin, with the CNFs concentrating between the ends of, and depositing on, the SCFs. For the same concentrations of SCFs and CNFs, the electric field induced alignment of the CNFs and the SCFs further increases the fracture toughness of the multi-scale toughened or hybrid epoxy polymer by up to twenty times that of the unmodified epoxy polymer. The intrinsic and extrinsic toughening mechanisms spanning the nano-to-millimetre length scale have been identified, based upon which an analytical model has been proposed. [Display omitted]
doi_str_mv 10.1016/j.compscitech.2018.07.034
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2132228318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0266353818301714</els_id><sourcerecordid>2132228318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-ea671168389958db6273431165f1c9a4efddcc921727a913d7d96caf9240791b3</originalsourceid><addsrcrecordid>eNqNkEtLAzEUhYMoWKv_IeJ6xjxmJpOlFF-guNF1SJM7bco0qUla7L83pQouXV0495xzuR9C15TUlNDudlWbsN4k4zKYZc0I7WsiasKbEzShvZAVJS05RRPCuq7iLe_P0UVKK0KIaCWboPy6HbOrktEj4By2iyV45xc4DBg24WuPD_UhlfqEd05jGMHk6AweHIwW69Et_Bp8PgSMjvPgsdc-DG4eS0J7i9MyxPy7O-qX6GzQY4KrnzlFHw_377On6uXt8Xl291KZhotcge4EpV3Peynb3s47JnjDi9IO1EjdwGCtMZJRwYSWlFthZWf0IFlDhKRzPkU3x95NDJ9bSFmtwjb6clIxyhljPad9ccmjy8SQUoRBbaJb67hXlKgDZLVSfyCrA2RFhCqQS3Z2zEJ5Y-cgquICb8C6WEApG9w_Wr4BbOmNNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132228318</pqid></control><display><type>article</type><title>Multi-scale toughening of epoxy composites via electric field alignment of carbon nanofibres and short carbon fibres</title><source>Elsevier ScienceDirect Journals</source><creator>Ravindran, Anil R. ; Ladani, Raj B. ; Wu, Shuying ; Kinloch, Anthony J. ; Wang, Chun H. ; Mouritz, Adrian P.</creator><creatorcontrib>Ravindran, Anil R. ; Ladani, Raj B. ; Wu, Shuying ; Kinloch, Anthony J. ; Wang, Chun H. ; Mouritz, Adrian P.</creatorcontrib><description>The present paper demonstrates that multi-scale fillers such as carbon nanofibres (CNFs) and short carbon fibres (SCFs) can significantly improve the mode I fracture toughness of epoxy composites by various toughening mechanisms. A comparative assessment on the toughening performance promoted by CNFs and SCFs is presented along with the effects of aligning the filler normal to the crack growth using an applied alternating current (AC) electric field. For SCF concentrations of up to 1.5 wt%, with a concentration of CNFs of 1.0 wt%, the multi-scale, hybrid reinforcements additively toughen the epoxy polymer, with the measured fracture toughness being up to about fourteen times the value of the unmodified epoxy polymer. When subjected to an external AC electric field, these two reinforcements rapidly align along the direction of the electrical field in epoxy resin, with the CNFs concentrating between the ends of, and depositing on, the SCFs. For the same concentrations of SCFs and CNFs, the electric field induced alignment of the CNFs and the SCFs further increases the fracture toughness of the multi-scale toughened or hybrid epoxy polymer by up to twenty times that of the unmodified epoxy polymer. The intrinsic and extrinsic toughening mechanisms spanning the nano-to-millimetre length scale have been identified, based upon which an analytical model has been proposed. [Display omitted]</description><identifier>ISSN: 0266-3538</identifier><identifier>EISSN: 1879-1050</identifier><identifier>DOI: 10.1016/j.compscitech.2018.07.034</identifier><language>eng</language><publisher>Barking: Elsevier Ltd</publisher><subject>A: Nanocomposites ; A: Short-fibre composites ; Alignment ; Alternating current ; B: Fracture toughness ; C: Multiscale modelling ; Carbon fiber reinforced plastics ; Carbon fibers ; Crack propagation ; Electric fields ; Epoxy resins ; Fillers ; Fracture toughness ; Mathematical models ; Nanocomposites ; Nanofibers ; Polymer matrix composites ; Toughening</subject><ispartof>Composites science and technology, 2018-10, Vol.167, p.115-125</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 20, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-ea671168389958db6273431165f1c9a4efddcc921727a913d7d96caf9240791b3</citedby><cites>FETCH-LOGICAL-c437t-ea671168389958db6273431165f1c9a4efddcc921727a913d7d96caf9240791b3</cites><orcidid>0000-0001-6081-1487 ; 0000-0002-6585-8898</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0266353818301714$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Ravindran, Anil R.</creatorcontrib><creatorcontrib>Ladani, Raj B.</creatorcontrib><creatorcontrib>Wu, Shuying</creatorcontrib><creatorcontrib>Kinloch, Anthony J.</creatorcontrib><creatorcontrib>Wang, Chun H.</creatorcontrib><creatorcontrib>Mouritz, Adrian P.</creatorcontrib><title>Multi-scale toughening of epoxy composites via electric field alignment of carbon nanofibres and short carbon fibres</title><title>Composites science and technology</title><description>The present paper demonstrates that multi-scale fillers such as carbon nanofibres (CNFs) and short carbon fibres (SCFs) can significantly improve the mode I fracture toughness of epoxy composites by various toughening mechanisms. A comparative assessment on the toughening performance promoted by CNFs and SCFs is presented along with the effects of aligning the filler normal to the crack growth using an applied alternating current (AC) electric field. For SCF concentrations of up to 1.5 wt%, with a concentration of CNFs of 1.0 wt%, the multi-scale, hybrid reinforcements additively toughen the epoxy polymer, with the measured fracture toughness being up to about fourteen times the value of the unmodified epoxy polymer. When subjected to an external AC electric field, these two reinforcements rapidly align along the direction of the electrical field in epoxy resin, with the CNFs concentrating between the ends of, and depositing on, the SCFs. For the same concentrations of SCFs and CNFs, the electric field induced alignment of the CNFs and the SCFs further increases the fracture toughness of the multi-scale toughened or hybrid epoxy polymer by up to twenty times that of the unmodified epoxy polymer. The intrinsic and extrinsic toughening mechanisms spanning the nano-to-millimetre length scale have been identified, based upon which an analytical model has been proposed. [Display omitted]</description><subject>A: Nanocomposites</subject><subject>A: Short-fibre composites</subject><subject>Alignment</subject><subject>Alternating current</subject><subject>B: Fracture toughness</subject><subject>C: Multiscale modelling</subject><subject>Carbon fiber reinforced plastics</subject><subject>Carbon fibers</subject><subject>Crack propagation</subject><subject>Electric fields</subject><subject>Epoxy resins</subject><subject>Fillers</subject><subject>Fracture toughness</subject><subject>Mathematical models</subject><subject>Nanocomposites</subject><subject>Nanofibers</subject><subject>Polymer matrix composites</subject><subject>Toughening</subject><issn>0266-3538</issn><issn>1879-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNkEtLAzEUhYMoWKv_IeJ6xjxmJpOlFF-guNF1SJM7bco0qUla7L83pQouXV0495xzuR9C15TUlNDudlWbsN4k4zKYZc0I7WsiasKbEzShvZAVJS05RRPCuq7iLe_P0UVKK0KIaCWboPy6HbOrktEj4By2iyV45xc4DBg24WuPD_UhlfqEd05jGMHk6AweHIwW69Et_Bp8PgSMjvPgsdc-DG4eS0J7i9MyxPy7O-qX6GzQY4KrnzlFHw_377On6uXt8Xl291KZhotcge4EpV3Peynb3s47JnjDi9IO1EjdwGCtMZJRwYSWlFthZWf0IFlDhKRzPkU3x95NDJ9bSFmtwjb6clIxyhljPad9ccmjy8SQUoRBbaJb67hXlKgDZLVSfyCrA2RFhCqQS3Z2zEJ5Y-cgquICb8C6WEApG9w_Wr4BbOmNNQ</recordid><startdate>20181020</startdate><enddate>20181020</enddate><creator>Ravindran, Anil R.</creator><creator>Ladani, Raj B.</creator><creator>Wu, Shuying</creator><creator>Kinloch, Anthony J.</creator><creator>Wang, Chun H.</creator><creator>Mouritz, Adrian P.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-6081-1487</orcidid><orcidid>https://orcid.org/0000-0002-6585-8898</orcidid></search><sort><creationdate>20181020</creationdate><title>Multi-scale toughening of epoxy composites via electric field alignment of carbon nanofibres and short carbon fibres</title><author>Ravindran, Anil R. ; Ladani, Raj B. ; Wu, Shuying ; Kinloch, Anthony J. ; Wang, Chun H. ; Mouritz, Adrian P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-ea671168389958db6273431165f1c9a4efddcc921727a913d7d96caf9240791b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>A: Nanocomposites</topic><topic>A: Short-fibre composites</topic><topic>Alignment</topic><topic>Alternating current</topic><topic>B: Fracture toughness</topic><topic>C: Multiscale modelling</topic><topic>Carbon fiber reinforced plastics</topic><topic>Carbon fibers</topic><topic>Crack propagation</topic><topic>Electric fields</topic><topic>Epoxy resins</topic><topic>Fillers</topic><topic>Fracture toughness</topic><topic>Mathematical models</topic><topic>Nanocomposites</topic><topic>Nanofibers</topic><topic>Polymer matrix composites</topic><topic>Toughening</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ravindran, Anil R.</creatorcontrib><creatorcontrib>Ladani, Raj B.</creatorcontrib><creatorcontrib>Wu, Shuying</creatorcontrib><creatorcontrib>Kinloch, Anthony J.</creatorcontrib><creatorcontrib>Wang, Chun H.</creatorcontrib><creatorcontrib>Mouritz, Adrian P.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Composites science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ravindran, Anil R.</au><au>Ladani, Raj B.</au><au>Wu, Shuying</au><au>Kinloch, Anthony J.</au><au>Wang, Chun H.</au><au>Mouritz, Adrian P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-scale toughening of epoxy composites via electric field alignment of carbon nanofibres and short carbon fibres</atitle><jtitle>Composites science and technology</jtitle><date>2018-10-20</date><risdate>2018</risdate><volume>167</volume><spage>115</spage><epage>125</epage><pages>115-125</pages><issn>0266-3538</issn><eissn>1879-1050</eissn><abstract>The present paper demonstrates that multi-scale fillers such as carbon nanofibres (CNFs) and short carbon fibres (SCFs) can significantly improve the mode I fracture toughness of epoxy composites by various toughening mechanisms. A comparative assessment on the toughening performance promoted by CNFs and SCFs is presented along with the effects of aligning the filler normal to the crack growth using an applied alternating current (AC) electric field. For SCF concentrations of up to 1.5 wt%, with a concentration of CNFs of 1.0 wt%, the multi-scale, hybrid reinforcements additively toughen the epoxy polymer, with the measured fracture toughness being up to about fourteen times the value of the unmodified epoxy polymer. When subjected to an external AC electric field, these two reinforcements rapidly align along the direction of the electrical field in epoxy resin, with the CNFs concentrating between the ends of, and depositing on, the SCFs. For the same concentrations of SCFs and CNFs, the electric field induced alignment of the CNFs and the SCFs further increases the fracture toughness of the multi-scale toughened or hybrid epoxy polymer by up to twenty times that of the unmodified epoxy polymer. The intrinsic and extrinsic toughening mechanisms spanning the nano-to-millimetre length scale have been identified, based upon which an analytical model has been proposed. [Display omitted]</abstract><cop>Barking</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compscitech.2018.07.034</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6081-1487</orcidid><orcidid>https://orcid.org/0000-0002-6585-8898</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0266-3538
ispartof Composites science and technology, 2018-10, Vol.167, p.115-125
issn 0266-3538
1879-1050
language eng
recordid cdi_proquest_journals_2132228318
source Elsevier ScienceDirect Journals
subjects A: Nanocomposites
A: Short-fibre composites
Alignment
Alternating current
B: Fracture toughness
C: Multiscale modelling
Carbon fiber reinforced plastics
Carbon fibers
Crack propagation
Electric fields
Epoxy resins
Fillers
Fracture toughness
Mathematical models
Nanocomposites
Nanofibers
Polymer matrix composites
Toughening
title Multi-scale toughening of epoxy composites via electric field alignment of carbon nanofibres and short carbon fibres
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A16%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-scale%20toughening%20of%20epoxy%20composites%20via%20electric%20field%20alignment%20of%20carbon%20nanofibres%20and%20short%20carbon%20fibres&rft.jtitle=Composites%20science%20and%20technology&rft.au=Ravindran,%20Anil%20R.&rft.date=2018-10-20&rft.volume=167&rft.spage=115&rft.epage=125&rft.pages=115-125&rft.issn=0266-3538&rft.eissn=1879-1050&rft_id=info:doi/10.1016/j.compscitech.2018.07.034&rft_dat=%3Cproquest_cross%3E2132228318%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132228318&rft_id=info:pmid/&rft_els_id=S0266353818301714&rfr_iscdi=true