Shear fatigue behavior of AW2099-T83 aluminum-lithium alloy
•Strain-controlled shear fatigue behavior of AW2099-T83 aluminum lithium alloy.•An elastic to plastic hysteresis loop evolution.•A regression-based analysis of the plastic strain and plastic energy evolution with number of cycles.•A comparative assessment of the fatigue parameters of the investigate...
Gespeichert in:
Veröffentlicht in: | International journal of fatigue 2018-12, Vol.117, p.101-110 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 110 |
---|---|
container_issue | |
container_start_page | 101 |
container_title | International journal of fatigue |
container_volume | 117 |
creator | Adinoyi, Muhammed J. Merah, Nesar Albinmousa, Jafar |
description | •Strain-controlled shear fatigue behavior of AW2099-T83 aluminum lithium alloy.•An elastic to plastic hysteresis loop evolution.•A regression-based analysis of the plastic strain and plastic energy evolution with number of cycles.•A comparative assessment of the fatigue parameters of the investigated alloy with traditional aluminum alloys.•Microscopic analysis of crack profile and fracture surface.
Monotonic shear and strain-controlled shear fatigue behavior of AW2099-T83/SHP Aluminum-Lithium alloy were investigated. Torsion fatigue testing was performed at strain amplitudes ranging from 0.5% to 1.5%. The material strain hardened under monotonic shear loading but cyclically softened after few fatigue cycles for all the ranges of applied strain amplitudes. Under torsion fatigue, macroscopic plastic deformation was observed only for strain amplitudes higher than 0.7%. Cyclic plastic strain was found to increase with the number of cycles and the mean stress remained very small during most of the specimen life. Coffin-Manson relation was used to determine the shear fatigue constants of the material. The developed properties were used to arrive at a good correlation between estimated and experimental fatigue life under shear strain loading. The shear fatigue properties were compared to values reported for traditional Al alloys 2xxx, 6xxx and 7xxx series in axial fatigue after the conversion of the shear fatigue parameters to axial equivalent. The surface crack paths were observed to be mostly in the longitudinal direction with a 90° bifurcation at low strain amplitudes. Resulting crack morphologies were analyzed by SEM. |
doi_str_mv | 10.1016/j.ijfatigue.2018.07.028 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2132228209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142112318303141</els_id><sourcerecordid>2132228209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-e6200d2b11e6dd9bdf08bd6640ad4eb2d1c1e998ffc2820d09b687a06dc9c8b83</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRsFZ_gwHPG2c3abKLp1K0CgUPVjwu-zGxG5Ju3SSF_ntTWrx6Ghje5x3mIeSeQcqAFY916utK9_57wJQDEymUKXBxQSZMlJJm-YxfkgmwnFPGeHZNbrquBgAJ5WxCnj42qGNyLkgMbvTeh5iEKpl_cZCSrkWW6GZo_XZoaeP7jR_acdGEwy25qnTT4d15Tsnny_N68UpX78u3xXxFbZZnPcWCAzhuGMPCOWlcBcK4oshBuxwNd8wylFJUleWCgwNpClFqKJyVVhiRTcnDqXcXw8-AXa_qMMTteFJxlnF-pOSYKk8pG0PXRazULvpWx4NioI6mVK3-TKmjKQWlGk2N5PxE4vjE3mNUnfW4teh8RNsrF_y_Hb9V9HTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132228209</pqid></control><display><type>article</type><title>Shear fatigue behavior of AW2099-T83 aluminum-lithium alloy</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Adinoyi, Muhammed J. ; Merah, Nesar ; Albinmousa, Jafar</creator><creatorcontrib>Adinoyi, Muhammed J. ; Merah, Nesar ; Albinmousa, Jafar</creatorcontrib><description>•Strain-controlled shear fatigue behavior of AW2099-T83 aluminum lithium alloy.•An elastic to plastic hysteresis loop evolution.•A regression-based analysis of the plastic strain and plastic energy evolution with number of cycles.•A comparative assessment of the fatigue parameters of the investigated alloy with traditional aluminum alloys.•Microscopic analysis of crack profile and fracture surface.
Monotonic shear and strain-controlled shear fatigue behavior of AW2099-T83/SHP Aluminum-Lithium alloy were investigated. Torsion fatigue testing was performed at strain amplitudes ranging from 0.5% to 1.5%. The material strain hardened under monotonic shear loading but cyclically softened after few fatigue cycles for all the ranges of applied strain amplitudes. Under torsion fatigue, macroscopic plastic deformation was observed only for strain amplitudes higher than 0.7%. Cyclic plastic strain was found to increase with the number of cycles and the mean stress remained very small during most of the specimen life. Coffin-Manson relation was used to determine the shear fatigue constants of the material. The developed properties were used to arrive at a good correlation between estimated and experimental fatigue life under shear strain loading. The shear fatigue properties were compared to values reported for traditional Al alloys 2xxx, 6xxx and 7xxx series in axial fatigue after the conversion of the shear fatigue parameters to axial equivalent. The surface crack paths were observed to be mostly in the longitudinal direction with a 90° bifurcation at low strain amplitudes. Resulting crack morphologies were analyzed by SEM.</description><identifier>ISSN: 0142-1123</identifier><identifier>EISSN: 1879-3452</identifier><identifier>DOI: 10.1016/j.ijfatigue.2018.07.028</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Aluminum ; Aluminum base alloys ; Aluminum-lithium ; Aluminum-lithium alloys ; Amplitudes ; Bifurcations ; Coffin-Manson ; Crack propagation ; Fatigue failure ; Fatigue life ; Fatigue tests ; Fractography ; Lithium ; Materials fatigue ; Morphology ; Plastic deformation ; Shear fatigue behavior ; Shear strain ; Shear stress ; Staircase crack ; Surface cracks ; Torsion</subject><ispartof>International journal of fatigue, 2018-12, Vol.117, p.101-110</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-e6200d2b11e6dd9bdf08bd6640ad4eb2d1c1e998ffc2820d09b687a06dc9c8b83</citedby><cites>FETCH-LOGICAL-c343t-e6200d2b11e6dd9bdf08bd6640ad4eb2d1c1e998ffc2820d09b687a06dc9c8b83</cites><orcidid>0000-0002-2395-5008</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijfatigue.2018.07.028$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Adinoyi, Muhammed J.</creatorcontrib><creatorcontrib>Merah, Nesar</creatorcontrib><creatorcontrib>Albinmousa, Jafar</creatorcontrib><title>Shear fatigue behavior of AW2099-T83 aluminum-lithium alloy</title><title>International journal of fatigue</title><description>•Strain-controlled shear fatigue behavior of AW2099-T83 aluminum lithium alloy.•An elastic to plastic hysteresis loop evolution.•A regression-based analysis of the plastic strain and plastic energy evolution with number of cycles.•A comparative assessment of the fatigue parameters of the investigated alloy with traditional aluminum alloys.•Microscopic analysis of crack profile and fracture surface.
Monotonic shear and strain-controlled shear fatigue behavior of AW2099-T83/SHP Aluminum-Lithium alloy were investigated. Torsion fatigue testing was performed at strain amplitudes ranging from 0.5% to 1.5%. The material strain hardened under monotonic shear loading but cyclically softened after few fatigue cycles for all the ranges of applied strain amplitudes. Under torsion fatigue, macroscopic plastic deformation was observed only for strain amplitudes higher than 0.7%. Cyclic plastic strain was found to increase with the number of cycles and the mean stress remained very small during most of the specimen life. Coffin-Manson relation was used to determine the shear fatigue constants of the material. The developed properties were used to arrive at a good correlation between estimated and experimental fatigue life under shear strain loading. The shear fatigue properties were compared to values reported for traditional Al alloys 2xxx, 6xxx and 7xxx series in axial fatigue after the conversion of the shear fatigue parameters to axial equivalent. The surface crack paths were observed to be mostly in the longitudinal direction with a 90° bifurcation at low strain amplitudes. Resulting crack morphologies were analyzed by SEM.</description><subject>Aluminum</subject><subject>Aluminum base alloys</subject><subject>Aluminum-lithium</subject><subject>Aluminum-lithium alloys</subject><subject>Amplitudes</subject><subject>Bifurcations</subject><subject>Coffin-Manson</subject><subject>Crack propagation</subject><subject>Fatigue failure</subject><subject>Fatigue life</subject><subject>Fatigue tests</subject><subject>Fractography</subject><subject>Lithium</subject><subject>Materials fatigue</subject><subject>Morphology</subject><subject>Plastic deformation</subject><subject>Shear fatigue behavior</subject><subject>Shear strain</subject><subject>Shear stress</subject><subject>Staircase crack</subject><subject>Surface cracks</subject><subject>Torsion</subject><issn>0142-1123</issn><issn>1879-3452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhhdRsFZ_gwHPG2c3abKLp1K0CgUPVjwu-zGxG5Ju3SSF_ntTWrx6Ghje5x3mIeSeQcqAFY916utK9_57wJQDEymUKXBxQSZMlJJm-YxfkgmwnFPGeHZNbrquBgAJ5WxCnj42qGNyLkgMbvTeh5iEKpl_cZCSrkWW6GZo_XZoaeP7jR_acdGEwy25qnTT4d15Tsnny_N68UpX78u3xXxFbZZnPcWCAzhuGMPCOWlcBcK4oshBuxwNd8wylFJUleWCgwNpClFqKJyVVhiRTcnDqXcXw8-AXa_qMMTteFJxlnF-pOSYKk8pG0PXRazULvpWx4NioI6mVK3-TKmjKQWlGk2N5PxE4vjE3mNUnfW4teh8RNsrF_y_Hb9V9HTQ</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Adinoyi, Muhammed J.</creator><creator>Merah, Nesar</creator><creator>Albinmousa, Jafar</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-2395-5008</orcidid></search><sort><creationdate>201812</creationdate><title>Shear fatigue behavior of AW2099-T83 aluminum-lithium alloy</title><author>Adinoyi, Muhammed J. ; Merah, Nesar ; Albinmousa, Jafar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-e6200d2b11e6dd9bdf08bd6640ad4eb2d1c1e998ffc2820d09b687a06dc9c8b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aluminum</topic><topic>Aluminum base alloys</topic><topic>Aluminum-lithium</topic><topic>Aluminum-lithium alloys</topic><topic>Amplitudes</topic><topic>Bifurcations</topic><topic>Coffin-Manson</topic><topic>Crack propagation</topic><topic>Fatigue failure</topic><topic>Fatigue life</topic><topic>Fatigue tests</topic><topic>Fractography</topic><topic>Lithium</topic><topic>Materials fatigue</topic><topic>Morphology</topic><topic>Plastic deformation</topic><topic>Shear fatigue behavior</topic><topic>Shear strain</topic><topic>Shear stress</topic><topic>Staircase crack</topic><topic>Surface cracks</topic><topic>Torsion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adinoyi, Muhammed J.</creatorcontrib><creatorcontrib>Merah, Nesar</creatorcontrib><creatorcontrib>Albinmousa, Jafar</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of fatigue</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adinoyi, Muhammed J.</au><au>Merah, Nesar</au><au>Albinmousa, Jafar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shear fatigue behavior of AW2099-T83 aluminum-lithium alloy</atitle><jtitle>International journal of fatigue</jtitle><date>2018-12</date><risdate>2018</risdate><volume>117</volume><spage>101</spage><epage>110</epage><pages>101-110</pages><issn>0142-1123</issn><eissn>1879-3452</eissn><abstract>•Strain-controlled shear fatigue behavior of AW2099-T83 aluminum lithium alloy.•An elastic to plastic hysteresis loop evolution.•A regression-based analysis of the plastic strain and plastic energy evolution with number of cycles.•A comparative assessment of the fatigue parameters of the investigated alloy with traditional aluminum alloys.•Microscopic analysis of crack profile and fracture surface.
Monotonic shear and strain-controlled shear fatigue behavior of AW2099-T83/SHP Aluminum-Lithium alloy were investigated. Torsion fatigue testing was performed at strain amplitudes ranging from 0.5% to 1.5%. The material strain hardened under monotonic shear loading but cyclically softened after few fatigue cycles for all the ranges of applied strain amplitudes. Under torsion fatigue, macroscopic plastic deformation was observed only for strain amplitudes higher than 0.7%. Cyclic plastic strain was found to increase with the number of cycles and the mean stress remained very small during most of the specimen life. Coffin-Manson relation was used to determine the shear fatigue constants of the material. The developed properties were used to arrive at a good correlation between estimated and experimental fatigue life under shear strain loading. The shear fatigue properties were compared to values reported for traditional Al alloys 2xxx, 6xxx and 7xxx series in axial fatigue after the conversion of the shear fatigue parameters to axial equivalent. The surface crack paths were observed to be mostly in the longitudinal direction with a 90° bifurcation at low strain amplitudes. Resulting crack morphologies were analyzed by SEM.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijfatigue.2018.07.028</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2395-5008</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-1123 |
ispartof | International journal of fatigue, 2018-12, Vol.117, p.101-110 |
issn | 0142-1123 1879-3452 |
language | eng |
recordid | cdi_proquest_journals_2132228209 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Aluminum Aluminum base alloys Aluminum-lithium Aluminum-lithium alloys Amplitudes Bifurcations Coffin-Manson Crack propagation Fatigue failure Fatigue life Fatigue tests Fractography Lithium Materials fatigue Morphology Plastic deformation Shear fatigue behavior Shear strain Shear stress Staircase crack Surface cracks Torsion |
title | Shear fatigue behavior of AW2099-T83 aluminum-lithium alloy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T03%3A33%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shear%20fatigue%20behavior%20of%20AW2099-T83%20aluminum-lithium%20alloy&rft.jtitle=International%20journal%20of%20fatigue&rft.au=Adinoyi,%20Muhammed%20J.&rft.date=2018-12&rft.volume=117&rft.spage=101&rft.epage=110&rft.pages=101-110&rft.issn=0142-1123&rft.eissn=1879-3452&rft_id=info:doi/10.1016/j.ijfatigue.2018.07.028&rft_dat=%3Cproquest_cross%3E2132228209%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132228209&rft_id=info:pmid/&rft_els_id=S0142112318303141&rfr_iscdi=true |