Shear fatigue behavior of AW2099-T83 aluminum-lithium alloy

•Strain-controlled shear fatigue behavior of AW2099-T83 aluminum lithium alloy.•An elastic to plastic hysteresis loop evolution.•A regression-based analysis of the plastic strain and plastic energy evolution with number of cycles.•A comparative assessment of the fatigue parameters of the investigate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of fatigue 2018-12, Vol.117, p.101-110
Hauptverfasser: Adinoyi, Muhammed J., Merah, Nesar, Albinmousa, Jafar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 110
container_issue
container_start_page 101
container_title International journal of fatigue
container_volume 117
creator Adinoyi, Muhammed J.
Merah, Nesar
Albinmousa, Jafar
description •Strain-controlled shear fatigue behavior of AW2099-T83 aluminum lithium alloy.•An elastic to plastic hysteresis loop evolution.•A regression-based analysis of the plastic strain and plastic energy evolution with number of cycles.•A comparative assessment of the fatigue parameters of the investigated alloy with traditional aluminum alloys.•Microscopic analysis of crack profile and fracture surface. Monotonic shear and strain-controlled shear fatigue behavior of AW2099-T83/SHP Aluminum-Lithium alloy were investigated. Torsion fatigue testing was performed at strain amplitudes ranging from 0.5% to 1.5%. The material strain hardened under monotonic shear loading but cyclically softened after few fatigue cycles for all the ranges of applied strain amplitudes. Under torsion fatigue, macroscopic plastic deformation was observed only for strain amplitudes higher than 0.7%. Cyclic plastic strain was found to increase with the number of cycles and the mean stress remained very small during most of the specimen life. Coffin-Manson relation was used to determine the shear fatigue constants of the material. The developed properties were used to arrive at a good correlation between estimated and experimental fatigue life under shear strain loading. The shear fatigue properties were compared to values reported for traditional Al alloys 2xxx, 6xxx and 7xxx series in axial fatigue after the conversion of the shear fatigue parameters to axial equivalent. The surface crack paths were observed to be mostly in the longitudinal direction with a 90° bifurcation at low strain amplitudes. Resulting crack morphologies were analyzed by SEM.
doi_str_mv 10.1016/j.ijfatigue.2018.07.028
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2132228209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142112318303141</els_id><sourcerecordid>2132228209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-e6200d2b11e6dd9bdf08bd6640ad4eb2d1c1e998ffc2820d09b687a06dc9c8b83</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRsFZ_gwHPG2c3abKLp1K0CgUPVjwu-zGxG5Ju3SSF_ntTWrx6Ghje5x3mIeSeQcqAFY916utK9_57wJQDEymUKXBxQSZMlJJm-YxfkgmwnFPGeHZNbrquBgAJ5WxCnj42qGNyLkgMbvTeh5iEKpl_cZCSrkWW6GZo_XZoaeP7jR_acdGEwy25qnTT4d15Tsnny_N68UpX78u3xXxFbZZnPcWCAzhuGMPCOWlcBcK4oshBuxwNd8wylFJUleWCgwNpClFqKJyVVhiRTcnDqXcXw8-AXa_qMMTteFJxlnF-pOSYKk8pG0PXRazULvpWx4NioI6mVK3-TKmjKQWlGk2N5PxE4vjE3mNUnfW4teh8RNsrF_y_Hb9V9HTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132228209</pqid></control><display><type>article</type><title>Shear fatigue behavior of AW2099-T83 aluminum-lithium alloy</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Adinoyi, Muhammed J. ; Merah, Nesar ; Albinmousa, Jafar</creator><creatorcontrib>Adinoyi, Muhammed J. ; Merah, Nesar ; Albinmousa, Jafar</creatorcontrib><description>•Strain-controlled shear fatigue behavior of AW2099-T83 aluminum lithium alloy.•An elastic to plastic hysteresis loop evolution.•A regression-based analysis of the plastic strain and plastic energy evolution with number of cycles.•A comparative assessment of the fatigue parameters of the investigated alloy with traditional aluminum alloys.•Microscopic analysis of crack profile and fracture surface. Monotonic shear and strain-controlled shear fatigue behavior of AW2099-T83/SHP Aluminum-Lithium alloy were investigated. Torsion fatigue testing was performed at strain amplitudes ranging from 0.5% to 1.5%. The material strain hardened under monotonic shear loading but cyclically softened after few fatigue cycles for all the ranges of applied strain amplitudes. Under torsion fatigue, macroscopic plastic deformation was observed only for strain amplitudes higher than 0.7%. Cyclic plastic strain was found to increase with the number of cycles and the mean stress remained very small during most of the specimen life. Coffin-Manson relation was used to determine the shear fatigue constants of the material. The developed properties were used to arrive at a good correlation between estimated and experimental fatigue life under shear strain loading. The shear fatigue properties were compared to values reported for traditional Al alloys 2xxx, 6xxx and 7xxx series in axial fatigue after the conversion of the shear fatigue parameters to axial equivalent. The surface crack paths were observed to be mostly in the longitudinal direction with a 90° bifurcation at low strain amplitudes. Resulting crack morphologies were analyzed by SEM.</description><identifier>ISSN: 0142-1123</identifier><identifier>EISSN: 1879-3452</identifier><identifier>DOI: 10.1016/j.ijfatigue.2018.07.028</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Aluminum ; Aluminum base alloys ; Aluminum-lithium ; Aluminum-lithium alloys ; Amplitudes ; Bifurcations ; Coffin-Manson ; Crack propagation ; Fatigue failure ; Fatigue life ; Fatigue tests ; Fractography ; Lithium ; Materials fatigue ; Morphology ; Plastic deformation ; Shear fatigue behavior ; Shear strain ; Shear stress ; Staircase crack ; Surface cracks ; Torsion</subject><ispartof>International journal of fatigue, 2018-12, Vol.117, p.101-110</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-e6200d2b11e6dd9bdf08bd6640ad4eb2d1c1e998ffc2820d09b687a06dc9c8b83</citedby><cites>FETCH-LOGICAL-c343t-e6200d2b11e6dd9bdf08bd6640ad4eb2d1c1e998ffc2820d09b687a06dc9c8b83</cites><orcidid>0000-0002-2395-5008</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijfatigue.2018.07.028$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Adinoyi, Muhammed J.</creatorcontrib><creatorcontrib>Merah, Nesar</creatorcontrib><creatorcontrib>Albinmousa, Jafar</creatorcontrib><title>Shear fatigue behavior of AW2099-T83 aluminum-lithium alloy</title><title>International journal of fatigue</title><description>•Strain-controlled shear fatigue behavior of AW2099-T83 aluminum lithium alloy.•An elastic to plastic hysteresis loop evolution.•A regression-based analysis of the plastic strain and plastic energy evolution with number of cycles.•A comparative assessment of the fatigue parameters of the investigated alloy with traditional aluminum alloys.•Microscopic analysis of crack profile and fracture surface. Monotonic shear and strain-controlled shear fatigue behavior of AW2099-T83/SHP Aluminum-Lithium alloy were investigated. Torsion fatigue testing was performed at strain amplitudes ranging from 0.5% to 1.5%. The material strain hardened under monotonic shear loading but cyclically softened after few fatigue cycles for all the ranges of applied strain amplitudes. Under torsion fatigue, macroscopic plastic deformation was observed only for strain amplitudes higher than 0.7%. Cyclic plastic strain was found to increase with the number of cycles and the mean stress remained very small during most of the specimen life. Coffin-Manson relation was used to determine the shear fatigue constants of the material. The developed properties were used to arrive at a good correlation between estimated and experimental fatigue life under shear strain loading. The shear fatigue properties were compared to values reported for traditional Al alloys 2xxx, 6xxx and 7xxx series in axial fatigue after the conversion of the shear fatigue parameters to axial equivalent. The surface crack paths were observed to be mostly in the longitudinal direction with a 90° bifurcation at low strain amplitudes. Resulting crack morphologies were analyzed by SEM.</description><subject>Aluminum</subject><subject>Aluminum base alloys</subject><subject>Aluminum-lithium</subject><subject>Aluminum-lithium alloys</subject><subject>Amplitudes</subject><subject>Bifurcations</subject><subject>Coffin-Manson</subject><subject>Crack propagation</subject><subject>Fatigue failure</subject><subject>Fatigue life</subject><subject>Fatigue tests</subject><subject>Fractography</subject><subject>Lithium</subject><subject>Materials fatigue</subject><subject>Morphology</subject><subject>Plastic deformation</subject><subject>Shear fatigue behavior</subject><subject>Shear strain</subject><subject>Shear stress</subject><subject>Staircase crack</subject><subject>Surface cracks</subject><subject>Torsion</subject><issn>0142-1123</issn><issn>1879-3452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhhdRsFZ_gwHPG2c3abKLp1K0CgUPVjwu-zGxG5Ju3SSF_ntTWrx6Ghje5x3mIeSeQcqAFY916utK9_57wJQDEymUKXBxQSZMlJJm-YxfkgmwnFPGeHZNbrquBgAJ5WxCnj42qGNyLkgMbvTeh5iEKpl_cZCSrkWW6GZo_XZoaeP7jR_acdGEwy25qnTT4d15Tsnny_N68UpX78u3xXxFbZZnPcWCAzhuGMPCOWlcBcK4oshBuxwNd8wylFJUleWCgwNpClFqKJyVVhiRTcnDqXcXw8-AXa_qMMTteFJxlnF-pOSYKk8pG0PXRazULvpWx4NioI6mVK3-TKmjKQWlGk2N5PxE4vjE3mNUnfW4teh8RNsrF_y_Hb9V9HTQ</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Adinoyi, Muhammed J.</creator><creator>Merah, Nesar</creator><creator>Albinmousa, Jafar</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-2395-5008</orcidid></search><sort><creationdate>201812</creationdate><title>Shear fatigue behavior of AW2099-T83 aluminum-lithium alloy</title><author>Adinoyi, Muhammed J. ; Merah, Nesar ; Albinmousa, Jafar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-e6200d2b11e6dd9bdf08bd6640ad4eb2d1c1e998ffc2820d09b687a06dc9c8b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aluminum</topic><topic>Aluminum base alloys</topic><topic>Aluminum-lithium</topic><topic>Aluminum-lithium alloys</topic><topic>Amplitudes</topic><topic>Bifurcations</topic><topic>Coffin-Manson</topic><topic>Crack propagation</topic><topic>Fatigue failure</topic><topic>Fatigue life</topic><topic>Fatigue tests</topic><topic>Fractography</topic><topic>Lithium</topic><topic>Materials fatigue</topic><topic>Morphology</topic><topic>Plastic deformation</topic><topic>Shear fatigue behavior</topic><topic>Shear strain</topic><topic>Shear stress</topic><topic>Staircase crack</topic><topic>Surface cracks</topic><topic>Torsion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adinoyi, Muhammed J.</creatorcontrib><creatorcontrib>Merah, Nesar</creatorcontrib><creatorcontrib>Albinmousa, Jafar</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of fatigue</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adinoyi, Muhammed J.</au><au>Merah, Nesar</au><au>Albinmousa, Jafar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shear fatigue behavior of AW2099-T83 aluminum-lithium alloy</atitle><jtitle>International journal of fatigue</jtitle><date>2018-12</date><risdate>2018</risdate><volume>117</volume><spage>101</spage><epage>110</epage><pages>101-110</pages><issn>0142-1123</issn><eissn>1879-3452</eissn><abstract>•Strain-controlled shear fatigue behavior of AW2099-T83 aluminum lithium alloy.•An elastic to plastic hysteresis loop evolution.•A regression-based analysis of the plastic strain and plastic energy evolution with number of cycles.•A comparative assessment of the fatigue parameters of the investigated alloy with traditional aluminum alloys.•Microscopic analysis of crack profile and fracture surface. Monotonic shear and strain-controlled shear fatigue behavior of AW2099-T83/SHP Aluminum-Lithium alloy were investigated. Torsion fatigue testing was performed at strain amplitudes ranging from 0.5% to 1.5%. The material strain hardened under monotonic shear loading but cyclically softened after few fatigue cycles for all the ranges of applied strain amplitudes. Under torsion fatigue, macroscopic plastic deformation was observed only for strain amplitudes higher than 0.7%. Cyclic plastic strain was found to increase with the number of cycles and the mean stress remained very small during most of the specimen life. Coffin-Manson relation was used to determine the shear fatigue constants of the material. The developed properties were used to arrive at a good correlation between estimated and experimental fatigue life under shear strain loading. The shear fatigue properties were compared to values reported for traditional Al alloys 2xxx, 6xxx and 7xxx series in axial fatigue after the conversion of the shear fatigue parameters to axial equivalent. The surface crack paths were observed to be mostly in the longitudinal direction with a 90° bifurcation at low strain amplitudes. Resulting crack morphologies were analyzed by SEM.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijfatigue.2018.07.028</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2395-5008</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0142-1123
ispartof International journal of fatigue, 2018-12, Vol.117, p.101-110
issn 0142-1123
1879-3452
language eng
recordid cdi_proquest_journals_2132228209
source Elsevier ScienceDirect Journals Complete
subjects Aluminum
Aluminum base alloys
Aluminum-lithium
Aluminum-lithium alloys
Amplitudes
Bifurcations
Coffin-Manson
Crack propagation
Fatigue failure
Fatigue life
Fatigue tests
Fractography
Lithium
Materials fatigue
Morphology
Plastic deformation
Shear fatigue behavior
Shear strain
Shear stress
Staircase crack
Surface cracks
Torsion
title Shear fatigue behavior of AW2099-T83 aluminum-lithium alloy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T03%3A33%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shear%20fatigue%20behavior%20of%20AW2099-T83%20aluminum-lithium%20alloy&rft.jtitle=International%20journal%20of%20fatigue&rft.au=Adinoyi,%20Muhammed%20J.&rft.date=2018-12&rft.volume=117&rft.spage=101&rft.epage=110&rft.pages=101-110&rft.issn=0142-1123&rft.eissn=1879-3452&rft_id=info:doi/10.1016/j.ijfatigue.2018.07.028&rft_dat=%3Cproquest_cross%3E2132228209%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132228209&rft_id=info:pmid/&rft_els_id=S0142112318303141&rfr_iscdi=true