Fabrication of self‐reinforced polyester composites and their mechanical and flame retardant properties

Self‐reinforced polyester composites (SRPCs) with light weight, high mechanical properties, good interfacial bonding, and easy to recycle at the end after use have been developed to replace traditional synthetic fiber‐reinforced plastics. This study is on fabrication of SRPCs is performed using poly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in polymer technology 2018-11, Vol.37 (7), p.2436-2445
Hauptverfasser: Wei, Zhang, Syed, Nabeel Ahmed, Muhammad, Latif, Jung‐IL, Song
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2445
container_issue 7
container_start_page 2436
container_title Advances in polymer technology
container_volume 37
creator Wei, Zhang
Syed, Nabeel Ahmed
Muhammad, Latif
Jung‐IL, Song
description Self‐reinforced polyester composites (SRPCs) with light weight, high mechanical properties, good interfacial bonding, and easy to recycle at the end after use have been developed to replace traditional synthetic fiber‐reinforced plastics. This study is on fabrication of SRPCs is performed using polyethylene terephthalate (PET) as matrix and polybutylene terephthalate (PBT) as reinforcement material through compression molding via film stacking method. The compression molding parameters such as temperature, pressure, and dwell time were optimized by Taguchi method, and these values are 225°C, 8 MPa, 5 min for tensile strength, 225°C, 5 MPa, 15 min for flexural, and 215°C, 3 MPa, 5 min for impact test. Flame retardancy in SRPCs has also been introduced as a new idea to minimize the flammability nature and is helpful in engineering applications. Flame retardants (FRs) such as ammonium polyphosphate (APP), zinc borate (Zb), and magnesium hydroxide (Mg(OH)2) were used. The flame retardancy mechanism of optimized SRPCs works effectively which was evident by horizontal burning and LOI test. Thermogravimetric analysis (TGA) was also studied to confirm the thermal properties of the composites. Mechanical properties were reasonably affected by the FRs as confirmed by field emission scanning electron microscope (FESEM).
doi_str_mv 10.1002/adv.21918
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2132180421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2132180421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3328-5aff1dbf5493c78444764ac90c2c1b7fc77e074e16711cf2c7b5e9564975ccbf3</originalsourceid><addsrcrecordid>eNp1kE1OwzAUhC0EEqWw4AaWWLFI67_E8bIqFJAqsQG2luM8q66SONgpqDuOwBk5CYGyZTXS0zczT4PQJSUzSgibm_ptxqii5RGaUKLKjHGmjtGESE6yopDqFJ2ltCWEUlHwCfIrU0VvzeBDh4PDCRr39fEZwXcuRAs17kOzhzRAxDa0fUh-gIRNV-NhAz7iFuzGdGNC83t0jWkBRxhMrE034D6GHuLgIZ2jE2eaBBd_OkXPq9un5X22frx7WC7WmeWclVlunKN15XKhuJWlEEIWwlhFLLO0ks5KCUQKoIWk1DpmZZWDyguhZG5t5fgUXR1yx-rX3fi53oZd7MZKzShntCRi1Cm6PlA2hpQiON1H35q415TonyX1uKT-XXJk5wf23Tew_x_Ui5uXg-MbuXl3uQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132180421</pqid></control><display><type>article</type><title>Fabrication of self‐reinforced polyester composites and their mechanical and flame retardant properties</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Wei, Zhang ; Syed, Nabeel Ahmed ; Muhammad, Latif ; Jung‐IL, Song</creator><creatorcontrib>Wei, Zhang ; Syed, Nabeel Ahmed ; Muhammad, Latif ; Jung‐IL, Song</creatorcontrib><description>Self‐reinforced polyester composites (SRPCs) with light weight, high mechanical properties, good interfacial bonding, and easy to recycle at the end after use have been developed to replace traditional synthetic fiber‐reinforced plastics. This study is on fabrication of SRPCs is performed using polyethylene terephthalate (PET) as matrix and polybutylene terephthalate (PBT) as reinforcement material through compression molding via film stacking method. The compression molding parameters such as temperature, pressure, and dwell time were optimized by Taguchi method, and these values are 225°C, 8 MPa, 5 min for tensile strength, 225°C, 5 MPa, 15 min for flexural, and 215°C, 3 MPa, 5 min for impact test. Flame retardancy in SRPCs has also been introduced as a new idea to minimize the flammability nature and is helpful in engineering applications. Flame retardants (FRs) such as ammonium polyphosphate (APP), zinc borate (Zb), and magnesium hydroxide (Mg(OH)2) were used. The flame retardancy mechanism of optimized SRPCs works effectively which was evident by horizontal burning and LOI test. Thermogravimetric analysis (TGA) was also studied to confirm the thermal properties of the composites. Mechanical properties were reasonably affected by the FRs as confirmed by field emission scanning electron microscope (FESEM).</description><identifier>ISSN: 0730-6679</identifier><identifier>EISSN: 1098-2329</identifier><identifier>DOI: 10.1002/adv.21918</identifier><language>eng</language><publisher>London: Hindawi Limited</publisher><subject>Composite materials ; Dwell time ; Fiber reinforced plastics ; Field emission microscopy ; Flame retardants ; Flammability ; Impact tests ; Interfacial bonding ; Magnesium hydroxide ; Mechanical properties ; Molding parameters ; Polybutylene terephthalates ; Polyethylene terephthalate ; Polymers ; Pressure molding ; self‐reinforced polyester composites ; Synthetic fibers ; Taguchi method ; Taguchi methods ; thermal analysis ; Thermodynamic properties ; Thermogravimetric analysis ; Weight reduction ; Zinc borate</subject><ispartof>Advances in polymer technology, 2018-11, Vol.37 (7), p.2436-2445</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><rights>Copyright © 2018 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3328-5aff1dbf5493c78444764ac90c2c1b7fc77e074e16711cf2c7b5e9564975ccbf3</citedby><cites>FETCH-LOGICAL-c3328-5aff1dbf5493c78444764ac90c2c1b7fc77e074e16711cf2c7b5e9564975ccbf3</cites><orcidid>0000-0002-2841-3232 ; 0000-0002-2831-7240</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Wei, Zhang</creatorcontrib><creatorcontrib>Syed, Nabeel Ahmed</creatorcontrib><creatorcontrib>Muhammad, Latif</creatorcontrib><creatorcontrib>Jung‐IL, Song</creatorcontrib><title>Fabrication of self‐reinforced polyester composites and their mechanical and flame retardant properties</title><title>Advances in polymer technology</title><description>Self‐reinforced polyester composites (SRPCs) with light weight, high mechanical properties, good interfacial bonding, and easy to recycle at the end after use have been developed to replace traditional synthetic fiber‐reinforced plastics. This study is on fabrication of SRPCs is performed using polyethylene terephthalate (PET) as matrix and polybutylene terephthalate (PBT) as reinforcement material through compression molding via film stacking method. The compression molding parameters such as temperature, pressure, and dwell time were optimized by Taguchi method, and these values are 225°C, 8 MPa, 5 min for tensile strength, 225°C, 5 MPa, 15 min for flexural, and 215°C, 3 MPa, 5 min for impact test. Flame retardancy in SRPCs has also been introduced as a new idea to minimize the flammability nature and is helpful in engineering applications. Flame retardants (FRs) such as ammonium polyphosphate (APP), zinc borate (Zb), and magnesium hydroxide (Mg(OH)2) were used. The flame retardancy mechanism of optimized SRPCs works effectively which was evident by horizontal burning and LOI test. Thermogravimetric analysis (TGA) was also studied to confirm the thermal properties of the composites. Mechanical properties were reasonably affected by the FRs as confirmed by field emission scanning electron microscope (FESEM).</description><subject>Composite materials</subject><subject>Dwell time</subject><subject>Fiber reinforced plastics</subject><subject>Field emission microscopy</subject><subject>Flame retardants</subject><subject>Flammability</subject><subject>Impact tests</subject><subject>Interfacial bonding</subject><subject>Magnesium hydroxide</subject><subject>Mechanical properties</subject><subject>Molding parameters</subject><subject>Polybutylene terephthalates</subject><subject>Polyethylene terephthalate</subject><subject>Polymers</subject><subject>Pressure molding</subject><subject>self‐reinforced polyester composites</subject><subject>Synthetic fibers</subject><subject>Taguchi method</subject><subject>Taguchi methods</subject><subject>thermal analysis</subject><subject>Thermodynamic properties</subject><subject>Thermogravimetric analysis</subject><subject>Weight reduction</subject><subject>Zinc borate</subject><issn>0730-6679</issn><issn>1098-2329</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAUhC0EEqWw4AaWWLFI67_E8bIqFJAqsQG2luM8q66SONgpqDuOwBk5CYGyZTXS0zczT4PQJSUzSgibm_ptxqii5RGaUKLKjHGmjtGESE6yopDqFJ2ltCWEUlHwCfIrU0VvzeBDh4PDCRr39fEZwXcuRAs17kOzhzRAxDa0fUh-gIRNV-NhAz7iFuzGdGNC83t0jWkBRxhMrE034D6GHuLgIZ2jE2eaBBd_OkXPq9un5X22frx7WC7WmeWclVlunKN15XKhuJWlEEIWwlhFLLO0ks5KCUQKoIWk1DpmZZWDyguhZG5t5fgUXR1yx-rX3fi53oZd7MZKzShntCRi1Cm6PlA2hpQiON1H35q415TonyX1uKT-XXJk5wf23Tew_x_Ui5uXg-MbuXl3uQ</recordid><startdate>201811</startdate><enddate>201811</enddate><creator>Wei, Zhang</creator><creator>Syed, Nabeel Ahmed</creator><creator>Muhammad, Latif</creator><creator>Jung‐IL, Song</creator><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-2841-3232</orcidid><orcidid>https://orcid.org/0000-0002-2831-7240</orcidid></search><sort><creationdate>201811</creationdate><title>Fabrication of self‐reinforced polyester composites and their mechanical and flame retardant properties</title><author>Wei, Zhang ; Syed, Nabeel Ahmed ; Muhammad, Latif ; Jung‐IL, Song</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3328-5aff1dbf5493c78444764ac90c2c1b7fc77e074e16711cf2c7b5e9564975ccbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Composite materials</topic><topic>Dwell time</topic><topic>Fiber reinforced plastics</topic><topic>Field emission microscopy</topic><topic>Flame retardants</topic><topic>Flammability</topic><topic>Impact tests</topic><topic>Interfacial bonding</topic><topic>Magnesium hydroxide</topic><topic>Mechanical properties</topic><topic>Molding parameters</topic><topic>Polybutylene terephthalates</topic><topic>Polyethylene terephthalate</topic><topic>Polymers</topic><topic>Pressure molding</topic><topic>self‐reinforced polyester composites</topic><topic>Synthetic fibers</topic><topic>Taguchi method</topic><topic>Taguchi methods</topic><topic>thermal analysis</topic><topic>Thermodynamic properties</topic><topic>Thermogravimetric analysis</topic><topic>Weight reduction</topic><topic>Zinc borate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Zhang</creatorcontrib><creatorcontrib>Syed, Nabeel Ahmed</creatorcontrib><creatorcontrib>Muhammad, Latif</creatorcontrib><creatorcontrib>Jung‐IL, Song</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Advances in polymer technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Zhang</au><au>Syed, Nabeel Ahmed</au><au>Muhammad, Latif</au><au>Jung‐IL, Song</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of self‐reinforced polyester composites and their mechanical and flame retardant properties</atitle><jtitle>Advances in polymer technology</jtitle><date>2018-11</date><risdate>2018</risdate><volume>37</volume><issue>7</issue><spage>2436</spage><epage>2445</epage><pages>2436-2445</pages><issn>0730-6679</issn><eissn>1098-2329</eissn><abstract>Self‐reinforced polyester composites (SRPCs) with light weight, high mechanical properties, good interfacial bonding, and easy to recycle at the end after use have been developed to replace traditional synthetic fiber‐reinforced plastics. This study is on fabrication of SRPCs is performed using polyethylene terephthalate (PET) as matrix and polybutylene terephthalate (PBT) as reinforcement material through compression molding via film stacking method. The compression molding parameters such as temperature, pressure, and dwell time were optimized by Taguchi method, and these values are 225°C, 8 MPa, 5 min for tensile strength, 225°C, 5 MPa, 15 min for flexural, and 215°C, 3 MPa, 5 min for impact test. Flame retardancy in SRPCs has also been introduced as a new idea to minimize the flammability nature and is helpful in engineering applications. Flame retardants (FRs) such as ammonium polyphosphate (APP), zinc borate (Zb), and magnesium hydroxide (Mg(OH)2) were used. The flame retardancy mechanism of optimized SRPCs works effectively which was evident by horizontal burning and LOI test. Thermogravimetric analysis (TGA) was also studied to confirm the thermal properties of the composites. Mechanical properties were reasonably affected by the FRs as confirmed by field emission scanning electron microscope (FESEM).</abstract><cop>London</cop><pub>Hindawi Limited</pub><doi>10.1002/adv.21918</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2841-3232</orcidid><orcidid>https://orcid.org/0000-0002-2831-7240</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0730-6679
ispartof Advances in polymer technology, 2018-11, Vol.37 (7), p.2436-2445
issn 0730-6679
1098-2329
language eng
recordid cdi_proquest_journals_2132180421
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Composite materials
Dwell time
Fiber reinforced plastics
Field emission microscopy
Flame retardants
Flammability
Impact tests
Interfacial bonding
Magnesium hydroxide
Mechanical properties
Molding parameters
Polybutylene terephthalates
Polyethylene terephthalate
Polymers
Pressure molding
self‐reinforced polyester composites
Synthetic fibers
Taguchi method
Taguchi methods
thermal analysis
Thermodynamic properties
Thermogravimetric analysis
Weight reduction
Zinc borate
title Fabrication of self‐reinforced polyester composites and their mechanical and flame retardant properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A26%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20self%E2%80%90reinforced%20polyester%20composites%20and%20their%20mechanical%20and%20flame%20retardant%20properties&rft.jtitle=Advances%20in%20polymer%20technology&rft.au=Wei,%20Zhang&rft.date=2018-11&rft.volume=37&rft.issue=7&rft.spage=2436&rft.epage=2445&rft.pages=2436-2445&rft.issn=0730-6679&rft.eissn=1098-2329&rft_id=info:doi/10.1002/adv.21918&rft_dat=%3Cproquest_cross%3E2132180421%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132180421&rft_id=info:pmid/&rfr_iscdi=true