Emotion detection from EEG recordings based on supervised and unsupervised dimension reduction

Summary In recent years, researchers have been trying to detect human emotions from recorded brain signals such as electroencephalogram (EEG) signals. However, due to the high levels of noise from the EEG recordings, a single feature alone cannot achieve good performance. A combination of distinct f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Concurrency and computation 2018-12, Vol.30 (23), p.n/a
Hauptverfasser: Liu, Jingxin, Meng, Hongying, Li, Maozhen, Zhang, Fan, Qin, Rui, Nandi, Asoke K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 23
container_start_page
container_title Concurrency and computation
container_volume 30
creator Liu, Jingxin
Meng, Hongying
Li, Maozhen
Zhang, Fan
Qin, Rui
Nandi, Asoke K.
description Summary In recent years, researchers have been trying to detect human emotions from recorded brain signals such as electroencephalogram (EEG) signals. However, due to the high levels of noise from the EEG recordings, a single feature alone cannot achieve good performance. A combination of distinct features is the key for automatic emotion detection. In this paper, we present a hybrid dimension feature reduction scheme using a total of 14 different features extracted from EEG recordings. The scheme combines these distinct features in the feature space using both supervised and unsupervised feature selection processes. Maximum Relevance Minimum Redundancy (mRMR) is applied to re‐order the combined features into max‐relevance with the labels and min‐redundancy of each feature. The generated features are further reduced with principal component analysis (PCA) for extracting the principal components. Experimental results show that the proposed work outperforms the state‐of‐art methods using the same settings in the publicly available DEAP data set.
doi_str_mv 10.1002/cpe.4446
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2132156655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2132156655</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3276-40850becbaf40546dc882e40a7ea3276a22be209260eee3f7b1d0f5093b6e1a23</originalsourceid><addsrcrecordid>eNp1kE9Lw0AQxRdRsFbBjxDw4iV19m_bo4RYhYIe9Oqy2Z1ISpONu43Sb98kFfHiad7M_HgPHiHXFGYUgN3ZFmdCCHVCJlRyloLi4vRXM3VOLmLcAFAKnE7Ie177XeWbxOEO7ajK4Oskz1dJQOuDq5qPmBQmokv6Z-xaDF_VsJnGJV3z5-CqGps4WAR03Wh2Sc5Ks4149TOn5O0hf80e0_Xz6im7X6eWs7lKBSwkFGgLUwqQQjm7WDAUYOZoBsAwViCDJVOAiLycF9RBKWHJC4XUMD4lN0ffNvjPDuNOb3wXmj5SM8oZlUpJ2VO3R8oGH2PAUrehqk3Yawp6aE_37emhvR5Nj-h3tcX9v5zOXvKRPwBHmXE1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132156655</pqid></control><display><type>article</type><title>Emotion detection from EEG recordings based on supervised and unsupervised dimension reduction</title><source>Access via Wiley Online Library</source><creator>Liu, Jingxin ; Meng, Hongying ; Li, Maozhen ; Zhang, Fan ; Qin, Rui ; Nandi, Asoke K.</creator><creatorcontrib>Liu, Jingxin ; Meng, Hongying ; Li, Maozhen ; Zhang, Fan ; Qin, Rui ; Nandi, Asoke K.</creatorcontrib><description>Summary In recent years, researchers have been trying to detect human emotions from recorded brain signals such as electroencephalogram (EEG) signals. However, due to the high levels of noise from the EEG recordings, a single feature alone cannot achieve good performance. A combination of distinct features is the key for automatic emotion detection. In this paper, we present a hybrid dimension feature reduction scheme using a total of 14 different features extracted from EEG recordings. The scheme combines these distinct features in the feature space using both supervised and unsupervised feature selection processes. Maximum Relevance Minimum Redundancy (mRMR) is applied to re‐order the combined features into max‐relevance with the labels and min‐redundancy of each feature. The generated features are further reduced with principal component analysis (PCA) for extracting the principal components. Experimental results show that the proposed work outperforms the state‐of‐art methods using the same settings in the publicly available DEAP data set.</description><identifier>ISSN: 1532-0626</identifier><identifier>EISSN: 1532-0634</identifier><identifier>DOI: 10.1002/cpe.4446</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>affective computing ; Brain ; EEG ; Electroencephalography ; emotion detection ; feature dimension reduction ; Feature extraction ; feature selection ; Principal components analysis ; Reduction ; Redundancy</subject><ispartof>Concurrency and computation, 2018-12, Vol.30 (23), p.n/a</ispartof><rights>2018 The Authors. Published by John Wiley &amp; Sons, Ltd.</rights><rights>2018 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3276-40850becbaf40546dc882e40a7ea3276a22be209260eee3f7b1d0f5093b6e1a23</citedby><cites>FETCH-LOGICAL-c3276-40850becbaf40546dc882e40a7ea3276a22be209260eee3f7b1d0f5093b6e1a23</cites><orcidid>0000-0002-8836-1382</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpe.4446$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpe.4446$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Liu, Jingxin</creatorcontrib><creatorcontrib>Meng, Hongying</creatorcontrib><creatorcontrib>Li, Maozhen</creatorcontrib><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Qin, Rui</creatorcontrib><creatorcontrib>Nandi, Asoke K.</creatorcontrib><title>Emotion detection from EEG recordings based on supervised and unsupervised dimension reduction</title><title>Concurrency and computation</title><description>Summary In recent years, researchers have been trying to detect human emotions from recorded brain signals such as electroencephalogram (EEG) signals. However, due to the high levels of noise from the EEG recordings, a single feature alone cannot achieve good performance. A combination of distinct features is the key for automatic emotion detection. In this paper, we present a hybrid dimension feature reduction scheme using a total of 14 different features extracted from EEG recordings. The scheme combines these distinct features in the feature space using both supervised and unsupervised feature selection processes. Maximum Relevance Minimum Redundancy (mRMR) is applied to re‐order the combined features into max‐relevance with the labels and min‐redundancy of each feature. The generated features are further reduced with principal component analysis (PCA) for extracting the principal components. Experimental results show that the proposed work outperforms the state‐of‐art methods using the same settings in the publicly available DEAP data set.</description><subject>affective computing</subject><subject>Brain</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>emotion detection</subject><subject>feature dimension reduction</subject><subject>Feature extraction</subject><subject>feature selection</subject><subject>Principal components analysis</subject><subject>Reduction</subject><subject>Redundancy</subject><issn>1532-0626</issn><issn>1532-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp1kE9Lw0AQxRdRsFbBjxDw4iV19m_bo4RYhYIe9Oqy2Z1ISpONu43Sb98kFfHiad7M_HgPHiHXFGYUgN3ZFmdCCHVCJlRyloLi4vRXM3VOLmLcAFAKnE7Ie177XeWbxOEO7ajK4Oskz1dJQOuDq5qPmBQmokv6Z-xaDF_VsJnGJV3z5-CqGps4WAR03Wh2Sc5Ks4149TOn5O0hf80e0_Xz6im7X6eWs7lKBSwkFGgLUwqQQjm7WDAUYOZoBsAwViCDJVOAiLycF9RBKWHJC4XUMD4lN0ffNvjPDuNOb3wXmj5SM8oZlUpJ2VO3R8oGH2PAUrehqk3Yawp6aE_37emhvR5Nj-h3tcX9v5zOXvKRPwBHmXE1</recordid><startdate>20181210</startdate><enddate>20181210</enddate><creator>Liu, Jingxin</creator><creator>Meng, Hongying</creator><creator>Li, Maozhen</creator><creator>Zhang, Fan</creator><creator>Qin, Rui</creator><creator>Nandi, Asoke K.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8836-1382</orcidid></search><sort><creationdate>20181210</creationdate><title>Emotion detection from EEG recordings based on supervised and unsupervised dimension reduction</title><author>Liu, Jingxin ; Meng, Hongying ; Li, Maozhen ; Zhang, Fan ; Qin, Rui ; Nandi, Asoke K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3276-40850becbaf40546dc882e40a7ea3276a22be209260eee3f7b1d0f5093b6e1a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>affective computing</topic><topic>Brain</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>emotion detection</topic><topic>feature dimension reduction</topic><topic>Feature extraction</topic><topic>feature selection</topic><topic>Principal components analysis</topic><topic>Reduction</topic><topic>Redundancy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jingxin</creatorcontrib><creatorcontrib>Meng, Hongying</creatorcontrib><creatorcontrib>Li, Maozhen</creatorcontrib><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Qin, Rui</creatorcontrib><creatorcontrib>Nandi, Asoke K.</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Concurrency and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jingxin</au><au>Meng, Hongying</au><au>Li, Maozhen</au><au>Zhang, Fan</au><au>Qin, Rui</au><au>Nandi, Asoke K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Emotion detection from EEG recordings based on supervised and unsupervised dimension reduction</atitle><jtitle>Concurrency and computation</jtitle><date>2018-12-10</date><risdate>2018</risdate><volume>30</volume><issue>23</issue><epage>n/a</epage><issn>1532-0626</issn><eissn>1532-0634</eissn><abstract>Summary In recent years, researchers have been trying to detect human emotions from recorded brain signals such as electroencephalogram (EEG) signals. However, due to the high levels of noise from the EEG recordings, a single feature alone cannot achieve good performance. A combination of distinct features is the key for automatic emotion detection. In this paper, we present a hybrid dimension feature reduction scheme using a total of 14 different features extracted from EEG recordings. The scheme combines these distinct features in the feature space using both supervised and unsupervised feature selection processes. Maximum Relevance Minimum Redundancy (mRMR) is applied to re‐order the combined features into max‐relevance with the labels and min‐redundancy of each feature. The generated features are further reduced with principal component analysis (PCA) for extracting the principal components. Experimental results show that the proposed work outperforms the state‐of‐art methods using the same settings in the publicly available DEAP data set.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cpe.4446</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8836-1382</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1532-0626
ispartof Concurrency and computation, 2018-12, Vol.30 (23), p.n/a
issn 1532-0626
1532-0634
language eng
recordid cdi_proquest_journals_2132156655
source Access via Wiley Online Library
subjects affective computing
Brain
EEG
Electroencephalography
emotion detection
feature dimension reduction
Feature extraction
feature selection
Principal components analysis
Reduction
Redundancy
title Emotion detection from EEG recordings based on supervised and unsupervised dimension reduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T14%3A15%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Emotion%20detection%20from%20EEG%20recordings%20based%20on%20supervised%20and%20unsupervised%20dimension%20reduction&rft.jtitle=Concurrency%20and%20computation&rft.au=Liu,%20Jingxin&rft.date=2018-12-10&rft.volume=30&rft.issue=23&rft.epage=n/a&rft.issn=1532-0626&rft.eissn=1532-0634&rft_id=info:doi/10.1002/cpe.4446&rft_dat=%3Cproquest_cross%3E2132156655%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132156655&rft_id=info:pmid/&rfr_iscdi=true