Reward maximization in general dynamic matching systems
We consider a matching system with random arrivals of items of different types. The items wait in queues—one per item type—until they are “matched.” Each matching requires certain quantities of items of different types; after a matching is activated, the associated items leave the system. There exis...
Gespeichert in:
Veröffentlicht in: | Queueing systems 2019-02, Vol.91 (1-2), p.143-170 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 170 |
---|---|
container_issue | 1-2 |
container_start_page | 143 |
container_title | Queueing systems |
container_volume | 91 |
creator | Nazari, Mohammadreza Stolyar, Alexander L. |
description | We consider a matching system with random arrivals of items of different types. The items wait in queues—one per item type—until they are “matched.” Each matching requires certain quantities of items of different types; after a matching is activated, the associated items leave the system. There exists a finite set of possible matchings, each producing a certain amount of “reward.” This model has a broad range of important applications, including assemble-to-order systems, Internet advertising, and matching web portals. We propose an optimal matching scheme in the sense that it asymptotically maximizes the long-term average matching reward, while keeping the queues stable. The scheme makes matching decisions in a specially constructed virtual system, which in turn controls decisions in the physical system. The key feature of the virtual system is that, unlike the physical one, it allows the queues to become negative. The matchings in the virtual system are controlled by an extended version of the greedy primal–dual (GPD) algorithm, which we prove to be asymptotically optimal—this in turn implies the asymptotic optimality of the entire scheme. The scheme is real time; at any time, it uses simple rules based on the current state of the virtual and physical queues. It is very robust in that it does not require any knowledge of the item arrival rates and automatically adapts to changing rates. The extended GPD algorithm and its asymptotic optimality apply to a quite general queueing network framework, not limited to matching problems, and therefore are of independent interest. |
doi_str_mv | 10.1007/s11134-018-9593-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2132132363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2132132363</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-7b1b4ea218ee88d270de0b1025b31e29a88942d6b8876b797b9bcd439ae941c03</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Fz9FMkjbJURa_YEEQPYeknV2zbNs16aL115ulgidhYA7vxwwPIZfAroExdZMAQEjKQFNTGkHHIzKDUnFqpBTHZMZ4qbIq2Ck5S2nDGKt4aWZEveCni03Ruq_Qhm83hL4rQlesscPotkUzdq4NddaH-j106yKNacA2nZOTldsmvPjdc_J2f_e6eKTL54enxe2S1gKqgSoPXqLjoBG1brhiDTIP-RsvALlxWhvJm8prrSqvjPLG140UxqGRUDMxJ1dT7y72H3tMg930-9jlk5aDOIyoRHbB5Kpjn1LEld3F0Lo4WmD2wMdOfGzmYw987JgzfMqk7O3WGP-a_w_9AAPvaBk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132132363</pqid></control><display><type>article</type><title>Reward maximization in general dynamic matching systems</title><source>Springer Nature - Complete Springer Journals</source><creator>Nazari, Mohammadreza ; Stolyar, Alexander L.</creator><creatorcontrib>Nazari, Mohammadreza ; Stolyar, Alexander L.</creatorcontrib><description>We consider a matching system with random arrivals of items of different types. The items wait in queues—one per item type—until they are “matched.” Each matching requires certain quantities of items of different types; after a matching is activated, the associated items leave the system. There exists a finite set of possible matchings, each producing a certain amount of “reward.” This model has a broad range of important applications, including assemble-to-order systems, Internet advertising, and matching web portals. We propose an optimal matching scheme in the sense that it asymptotically maximizes the long-term average matching reward, while keeping the queues stable. The scheme makes matching decisions in a specially constructed virtual system, which in turn controls decisions in the physical system. The key feature of the virtual system is that, unlike the physical one, it allows the queues to become negative. The matchings in the virtual system are controlled by an extended version of the greedy primal–dual (GPD) algorithm, which we prove to be asymptotically optimal—this in turn implies the asymptotic optimality of the entire scheme. The scheme is real time; at any time, it uses simple rules based on the current state of the virtual and physical queues. It is very robust in that it does not require any knowledge of the item arrival rates and automatically adapts to changing rates. The extended GPD algorithm and its asymptotic optimality apply to a quite general queueing network framework, not limited to matching problems, and therefore are of independent interest.</description><identifier>ISSN: 0257-0130</identifier><identifier>EISSN: 1572-9443</identifier><identifier>DOI: 10.1007/s11134-018-9593-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Asymptotic properties ; Business and Management ; Computer Communication Networks ; Control ; Decisions ; Greedy algorithms ; Matching ; Operations Research/Decision Theory ; Optimization ; Probability Theory and Stochastic Processes ; Queues ; Supply Chain Management ; Systems Theory</subject><ispartof>Queueing systems, 2019-02, Vol.91 (1-2), p.143-170</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Queueing Systems is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-7b1b4ea218ee88d270de0b1025b31e29a88942d6b8876b797b9bcd439ae941c03</citedby><cites>FETCH-LOGICAL-c316t-7b1b4ea218ee88d270de0b1025b31e29a88942d6b8876b797b9bcd439ae941c03</cites><orcidid>0000-0002-7575-6289</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11134-018-9593-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11134-018-9593-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids></links><search><creatorcontrib>Nazari, Mohammadreza</creatorcontrib><creatorcontrib>Stolyar, Alexander L.</creatorcontrib><title>Reward maximization in general dynamic matching systems</title><title>Queueing systems</title><addtitle>Queueing Syst</addtitle><description>We consider a matching system with random arrivals of items of different types. The items wait in queues—one per item type—until they are “matched.” Each matching requires certain quantities of items of different types; after a matching is activated, the associated items leave the system. There exists a finite set of possible matchings, each producing a certain amount of “reward.” This model has a broad range of important applications, including assemble-to-order systems, Internet advertising, and matching web portals. We propose an optimal matching scheme in the sense that it asymptotically maximizes the long-term average matching reward, while keeping the queues stable. The scheme makes matching decisions in a specially constructed virtual system, which in turn controls decisions in the physical system. The key feature of the virtual system is that, unlike the physical one, it allows the queues to become negative. The matchings in the virtual system are controlled by an extended version of the greedy primal–dual (GPD) algorithm, which we prove to be asymptotically optimal—this in turn implies the asymptotic optimality of the entire scheme. The scheme is real time; at any time, it uses simple rules based on the current state of the virtual and physical queues. It is very robust in that it does not require any knowledge of the item arrival rates and automatically adapts to changing rates. The extended GPD algorithm and its asymptotic optimality apply to a quite general queueing network framework, not limited to matching problems, and therefore are of independent interest.</description><subject>Asymptotic properties</subject><subject>Business and Management</subject><subject>Computer Communication Networks</subject><subject>Control</subject><subject>Decisions</subject><subject>Greedy algorithms</subject><subject>Matching</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Queues</subject><subject>Supply Chain Management</subject><subject>Systems Theory</subject><issn>0257-0130</issn><issn>1572-9443</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG8Fz9FMkjbJURa_YEEQPYeknV2zbNs16aL115ulgidhYA7vxwwPIZfAroExdZMAQEjKQFNTGkHHIzKDUnFqpBTHZMZ4qbIq2Ck5S2nDGKt4aWZEveCni03Ruq_Qhm83hL4rQlesscPotkUzdq4NddaH-j106yKNacA2nZOTldsmvPjdc_J2f_e6eKTL54enxe2S1gKqgSoPXqLjoBG1brhiDTIP-RsvALlxWhvJm8prrSqvjPLG140UxqGRUDMxJ1dT7y72H3tMg930-9jlk5aDOIyoRHbB5Kpjn1LEld3F0Lo4WmD2wMdOfGzmYw987JgzfMqk7O3WGP-a_w_9AAPvaBk</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Nazari, Mohammadreza</creator><creator>Stolyar, Alexander L.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-7575-6289</orcidid></search><sort><creationdate>20190201</creationdate><title>Reward maximization in general dynamic matching systems</title><author>Nazari, Mohammadreza ; Stolyar, Alexander L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-7b1b4ea218ee88d270de0b1025b31e29a88942d6b8876b797b9bcd439ae941c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Asymptotic properties</topic><topic>Business and Management</topic><topic>Computer Communication Networks</topic><topic>Control</topic><topic>Decisions</topic><topic>Greedy algorithms</topic><topic>Matching</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Queues</topic><topic>Supply Chain Management</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nazari, Mohammadreza</creatorcontrib><creatorcontrib>Stolyar, Alexander L.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Queueing systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nazari, Mohammadreza</au><au>Stolyar, Alexander L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reward maximization in general dynamic matching systems</atitle><jtitle>Queueing systems</jtitle><stitle>Queueing Syst</stitle><date>2019-02-01</date><risdate>2019</risdate><volume>91</volume><issue>1-2</issue><spage>143</spage><epage>170</epage><pages>143-170</pages><issn>0257-0130</issn><eissn>1572-9443</eissn><abstract>We consider a matching system with random arrivals of items of different types. The items wait in queues—one per item type—until they are “matched.” Each matching requires certain quantities of items of different types; after a matching is activated, the associated items leave the system. There exists a finite set of possible matchings, each producing a certain amount of “reward.” This model has a broad range of important applications, including assemble-to-order systems, Internet advertising, and matching web portals. We propose an optimal matching scheme in the sense that it asymptotically maximizes the long-term average matching reward, while keeping the queues stable. The scheme makes matching decisions in a specially constructed virtual system, which in turn controls decisions in the physical system. The key feature of the virtual system is that, unlike the physical one, it allows the queues to become negative. The matchings in the virtual system are controlled by an extended version of the greedy primal–dual (GPD) algorithm, which we prove to be asymptotically optimal—this in turn implies the asymptotic optimality of the entire scheme. The scheme is real time; at any time, it uses simple rules based on the current state of the virtual and physical queues. It is very robust in that it does not require any knowledge of the item arrival rates and automatically adapts to changing rates. The extended GPD algorithm and its asymptotic optimality apply to a quite general queueing network framework, not limited to matching problems, and therefore are of independent interest.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11134-018-9593-y</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0002-7575-6289</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0257-0130 |
ispartof | Queueing systems, 2019-02, Vol.91 (1-2), p.143-170 |
issn | 0257-0130 1572-9443 |
language | eng |
recordid | cdi_proquest_journals_2132132363 |
source | Springer Nature - Complete Springer Journals |
subjects | Asymptotic properties Business and Management Computer Communication Networks Control Decisions Greedy algorithms Matching Operations Research/Decision Theory Optimization Probability Theory and Stochastic Processes Queues Supply Chain Management Systems Theory |
title | Reward maximization in general dynamic matching systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T21%3A36%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reward%20maximization%20in%20general%20dynamic%20matching%20systems&rft.jtitle=Queueing%20systems&rft.au=Nazari,%20Mohammadreza&rft.date=2019-02-01&rft.volume=91&rft.issue=1-2&rft.spage=143&rft.epage=170&rft.pages=143-170&rft.issn=0257-0130&rft.eissn=1572-9443&rft_id=info:doi/10.1007/s11134-018-9593-y&rft_dat=%3Cproquest_cross%3E2132132363%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132132363&rft_id=info:pmid/&rfr_iscdi=true |